In-Situ Assembly of MoS2 Nanostructures on EHD-Printed Microscale PVDF Fibrous Films for Potential Energy Storage Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials for EHD Printing
2.2. EHD Printing of the PVDF Film
2.3. The Assembly of MoS2 Nanostructures on EHD-Printed Film
2.4. Structural Observation and Material Characterization
2.5. Electrochemical Measurements
3. Results
3.1. EHD Printing of the Microscale PVDF Fibers
3.2. In-Situ Assembly of MoS2 Nanostructure on EHD-Printed PVDF Fibrous Films
3.3. Potential Energy Storage Capacity of the MoS2-PVDF Composite Film as Supercapacitor Electrode
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adam, A.A.; Ojur Dennis, J.; Al-Hadeethi, Y.; Mkawi, E.; Abubakar Abdulkadir, B.; Usman, F.; Mudassir Hassan, Y.; Wadi, I.; Sani, M. State of the art and new directions on electrospun lignin/cellulose nanofibers for supercapacitor application: A systematic literature review. Polymers 2020, 12, 2884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Yang, M.; Chen, W. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 2021, 41, 522–545. [Google Scholar] [CrossRef]
- Ruano, G.; Iribarren, J.I.; Pérez-Madrigal, M.M.; Torras, J.; Alemán, C. Electrical and capacitive response of hydrogel solid-like electrolytes for supercapacitors. Polymers 2021, 13, 1337. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Shen, M. The control of lithium-ion batteries and supercapacitors in hybrid energy storage systems for electric vehicles: A review. Int. J. Energy Res. 2021, 45, 20524–20544. [Google Scholar] [CrossRef]
- Kim, C.; Zhu, C.; Aoki, Y.; Habazaki, H. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors. Electrochim. Acta 2019, 314, 173–187. [Google Scholar] [CrossRef]
- Cao, J.; Zhu, C.; Aoki, Y.; Habazaki, H. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 7292–7303. [Google Scholar] [CrossRef]
- Liu, X.; Lai, C.; Xiao, Z.; Zou, S.; Liu, K.; Yin, Y.; Liang, T.; Wu, Z. Superb electrolyte penetration/absorption of three-dimensional porous carbon nanosheets for multifunctional supercapacitor. ACS Appl. Energy Mater. 2019, 2, 3185–3193. [Google Scholar] [CrossRef]
- Xiang, L.; Luo, D.; Yang, J.; Sun, X.; Qi, Y.; Qin, S. Preparation and comparison of properties of three phase change energy storage materials with hollow fiber membrane as the supporting carrier. Polymers 2019, 11, 1343. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.-e.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef]
- He, P.; He, J.; Huo, Z.; Li, D. Microfluidics-based fabrication of flexible ionic hydrogel batteries inspired by electric eels. Energy Storage Mater. 2022, 49, 348–359. [Google Scholar] [CrossRef]
- Egorov, V.; Gulzar, U.; Zhang, Y.; Breen, S.; O’Dwyer, C. Evolution of 3d printing methods and materials for electrochemical energy storage. Adv. Mater. 2020, 32, 2000556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mei, H.; Chang, P.; Cheng, L. 3d printing of structured electrodes for rechargeable batteries. J. Mater. Chem. A 2020, 8, 10670–10694. [Google Scholar] [CrossRef]
- Mai, Z.; Liu, D.; Chen, Z.; Lin, D.; Zheng, W.; Dong, X.; Gao, Q.; Zhou, W. Fabrication and application of photocatalytic composites and water treatment facility based on 3d printing technology. Polymers 2021, 13, 2196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, M.C.; Liu, C.; Wu, Q.; Mei, C. 3d printed ti3c2tx mxene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3d printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593. [Google Scholar] [CrossRef]
- Nguyen, J.; Stwodah, R.M.; Vasey, C.L.; Rabatin, B.E.; Atherton, B.; D’Angelo, P.A.; Swana, K.W.; Tang, C. Thermochromic fibers via electrospinning. Polymers 2020, 12, 842. [Google Scholar] [CrossRef]
- Zhang, B.; He, J.; Lei, Q.; Li, D. Electrohydrodynamic printing of sub-microscale fibrous architectures with improved cell adhesion capacity. Virtual Phys. Prototyp. 2020, 15, 62–74. [Google Scholar] [CrossRef]
- Zhang, B.; He, J.; Zheng, G.; Huang, Y.; Wang, C.; He, P.; Sui, F.; Meng, L.; Lin, L. Electrohydrodynamic 3d printing of orderly carbon/nickel composite network as supercapacitor electrodes. J. Mater. Sci. Technol. 2021, 82, 135–143. [Google Scholar] [CrossRef]
- Liashenko, I.; Rosell-Llompart, J.; Cabot, A. Ultrafast 3d printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 2020, 11, 753. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, J.; Huang, Q.; Hu, P.; Xiao, C. Pvdf fiber membrane with ordered porous structure via 3d printing near field electrospinning. J. Membr. Sci. 2021, 618, 118709. [Google Scholar] [CrossRef]
- Lee, T.H.; Chen, C.Y.; Tsai, C.Y.; Fuh, Y.K. Near-field electrospun piezoelectric fibers as sound-sensing elements. Polymers 2018, 10, 692. [Google Scholar] [CrossRef]
- Luo, G.; Teh, K.S.; Liu, Y.; Zang, X.; Wen, Z.; Lin, L. Direct-write, self-aligned electrospinning on paper for controllable fabrication of three-dimensional structures. ACS Appl. Mater. Interfaces 2015, 7, 27765–27770. [Google Scholar] [CrossRef] [PubMed]
- Vijayavenkataraman, S.; Zhang, S.; Thaharah, S.; Sriram, G.; Lu, W.F.; Fuh, J.Y.H. Electrohydrodynamic jet 3d printed nerve guide conduits (ngcs) for peripheral nerve injury repair. Polymers 2018, 10, 753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, J.; Li, X.; Xu, F.; Li, D. Micro/nanoscale electrohydrodynamic printing: From 2d to 3d. Nanoscale 2016, 8, 15376–15388. [Google Scholar] [CrossRef]
- He, J.; Hao, G.; Meng, Z.; Cao, Y.; Li, D. Expanding melt-based electrohydrodynamic printing of highly-ordered microfibrous architectures to cm-height via in situ charge neutralization. Adv. Mater. Technol. 2021, 7, 2101197. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Jiang, Z.-H.; Lu, B.-R.; Liu, J.-T.; Cao, F.-H.; Li, H.; Yu, Z.-L.; Yu, S.-H. Mos2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage. Nano Energy 2019, 61, 104–110. [Google Scholar] [CrossRef]
- Sarkar, D.; Das, D.; Das, S.; Kumar, A.; Patil, S.; Nanda, K.K.; Sarma, D.; Shukla, A. Expanding interlayer spacing in MoS2 for realizing an advanced supercapacitor. ACS Energy Lett. 2019, 4, 1602–1609. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling. Adv. Funct. Mater. 2019, 29, 1901127. [Google Scholar] [CrossRef]
- Lee, J.-S.M.; Briggs, M.E.; Hu, C.-C.; Cooper, A.I. Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 2018, 46, 277–289. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Zhang, X.; Li, X.; Zhang, G.; Cao, P. 3d printed micro-electrochemical energy storage devices: From design to integration. Adv. Funct. Mater. 2021, 31, 2104909. [Google Scholar] [CrossRef]
- Tümer, E.H.; Erbil, H.Y. Extrusion-based 3d printing applications of pla composites: A review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Awasthi, P.; Banerjee, S.S. Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Addit. Manuf. 2021, 46, 102177. [Google Scholar] [CrossRef]
- Zhang, B.; He, J.; Li, J.; Wang, L.; Li, D. Microscale electrohydrodynamic printing of in situ reactive features for patterned zno nanorods. Nanotechnology 2019, 30, 475301. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, W.; Dong, H.; Gui, Q.; Hu, Z.; Li, Y.; Liu, J. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 2021, 33, 2004959. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Bae, J.; Ding, Y.; Zhang, X.; Yu, G. Liquid alloy enabled solid-state batteries for conformal electrode–electrolyte interfaces. Adv. Funct. Mater. 2021, 31, 2010863. [Google Scholar] [CrossRef]
- Thong, P.T.; Sadhasivam, T.; Kim, N.-I.; Kim, Y.A.; Roh, S.-H.; Jung, H.-Y. Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film zn–mno2 battery. Energy 2021, 221, 119856. [Google Scholar] [CrossRef]
- Woo, S.; Nam, D.; Chang, W.; Ko, Y.; Lee, S.; Song, Y.; Yeom, B.; Moon, J.H.; Lee, S.W.; Cho, J. A layer-by-layer assembly route to electroplated fibril-based 3d porous current collectors for energy storage devices. Small 2021, 17, 2007579. [Google Scholar] [CrossRef]
- Lei, Z.; Liu, L.; Zhao, H.; Liang, F.; Chang, S.; Li, L.; Zhang, Y.; Lin, Z.; Kröger, J.; Lei, Y. Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat. Commun. 2020, 11, 299. [Google Scholar] [CrossRef]
- Eun, J.H.; Sung, S.M.; Kim, M.S.; Choi, B.K.; Lee, J.S. Effect of mwcnt content on the mechanical and piezoelectric properties of pvdf nanofibers. Mater. Des. 2021, 206, 109785. [Google Scholar] [CrossRef]
- Qian, Y.; Kang, D.J. Poly (dimethylsiloxane)/zno nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation. ACS Appl. Mater. Interfaces 2018, 10, 32281–32288. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Li, S.; Qureshi, M.S.H.; Mia, U.; Ge, Z.; Song, A. In-Situ Assembly of MoS2 Nanostructures on EHD-Printed Microscale PVDF Fibrous Films for Potential Energy Storage Applications. Polymers 2022, 14, 5250. https://doi.org/10.3390/polym14235250
Zhang B, Li S, Qureshi MSH, Mia U, Ge Z, Song A. In-Situ Assembly of MoS2 Nanostructures on EHD-Printed Microscale PVDF Fibrous Films for Potential Energy Storage Applications. Polymers. 2022; 14(23):5250. https://doi.org/10.3390/polym14235250
Chicago/Turabian StyleZhang, Bing, Shikang Li, M. Shafin. H. Qureshi, Ukil Mia, Zhenghui Ge, and Aiping Song. 2022. "In-Situ Assembly of MoS2 Nanostructures on EHD-Printed Microscale PVDF Fibrous Films for Potential Energy Storage Applications" Polymers 14, no. 23: 5250. https://doi.org/10.3390/polym14235250
APA StyleZhang, B., Li, S., Qureshi, M. S. H., Mia, U., Ge, Z., & Song, A. (2022). In-Situ Assembly of MoS2 Nanostructures on EHD-Printed Microscale PVDF Fibrous Films for Potential Energy Storage Applications. Polymers, 14(23), 5250. https://doi.org/10.3390/polym14235250