Tensile Behavior of Joints of Strip Ends Made of Polymeric Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Considerations
2.2. Materials
2.3. Experimental Conditions
2.4. The Use of the Finite Element Method to Model Some Aspects of the Tensile Behavior of a Joint
2.5. Using the ANOVA Method to Identify Significant Input Factors
3. Results
+ 0.0171nh2 + 0.00602s − 0.00121s2 + 1.996now − 0.265now2 − 31.306l + 33.259l2 + 0.306o − 0.0261o2,
+ 0.0272nh2 + 0.416s − 0.0132s2 + 1.794now − 0.303now2 − 126.527l + 138.649l2 − 0.482o + 0.206o2,
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwary, V.K.; Ravi, N.; Arunkumar, P.; Shivakumar, S.; Deshpande, A.S.; Malik, V.R. Investigations on friction stir joining of 3D printed parts to overcome bed size limitation and enhance joint quality for unmanned aircraft systems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 4857–4871. [Google Scholar] [CrossRef]
- Lopes, L.R.; Silva, A.F.; Carneiro, O.S. Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance. Addit. Manuf. J. 2018, 23, 45–52. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, J. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: Effect on morphology, interface, mechanical properties and hydrophilicity. Appl. Surf. Sci. 2018, 437, 62–69. [Google Scholar] [CrossRef]
- Tamburrino, F.; Graziosi, S.; Bordegoni, M. The influence of slicing parameters on the multi-material adhesion mechanisms of FDM printed parts: An exploratory study. Virtual. Phys. Prototyp. 2019, 14, 316–332. [Google Scholar] [CrossRef]
- Ribeiro, M.; Sousa Carneiro, O. Interface geometries in 3D multi-material prints by fused filament fabrication. Rapid Prototyp. J. 2019, 25, 38–46. [Google Scholar] [CrossRef]
- Andó, M.; Birosz, M.; Jeganmohan, S. Surface bonding of additive manufactured parts from multi-colored PLA materials. Measurement 2021, 169, 108583. [Google Scholar] [CrossRef]
- Kluczyński, J.; Śnieżek, L.; Kravcov, A.; Grzelak, K.; Svoboda, P.; Szachogłuchowicz, I.; Franek, O.; Morozov, N.; Torzewski, J.; Kubeček, P. The examination of restrained joints created in the process of multi-material FFF additive manufacturing technology. Materials 2020, 13, 903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on additive manufacturing of multi-material parts: Progress and challenges. J. Manuf. Mater. Process. 2022, 6, 4. [Google Scholar] [CrossRef]
- Kuipers, T.; Su, R.; Wu, J.; Wang, C.C.L. Interlaced Topologically Interlocking Lattice for continuous dual-material extrusion. Addit. Manuf. 2022, 50, 102495. [Google Scholar] [CrossRef]
- Acherjee, B. Laser transmission welding of polymers—A review on process fundamentals, material attributes, weldability, and welding techniques. J. Manuf. Process. 2020, 60, 227–246. [Google Scholar] [CrossRef]
- Focke, W.W.; Joseph, S.; Grimbeek, J.; Summers, G.J.; Kretzschmar, B. Mechanical Properties of Ternary Blends of ABS + HIPS + PETG. Polym. Plast. Technol. Eng. 2009, 48, 814–820. [Google Scholar] [CrossRef]
- Fisher, R.A. The Design of Experiments; Oliver and Boyd: Edinburgh/London, UK, 1935; Available online: http://tankona.free.fr/fisher1935.pdf (accessed on 23 July 2022).
- Yates, F. Sir Ronald Fisher and the design of experiments. Biometrix 1964, 20, 307–321. [Google Scholar] [CrossRef]
- Yuangyai, C.; Nembhard, H.B. Design of experiments. In Emerging Nanotechnologies for Manufacturing; Ahmed, V., Jakson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 207–234. Available online: https://www.sciencedirect.com/book/9780815515838/emerging-nanotechnologies-for-manufacturing (accessed on 16 August 2022).
- Pillet, M. Introduction aux Plans d’expériences par la Méthode Taguchi, 2nd ed.; Les Éditions d’Organisation: Paris, France, 1992. [Google Scholar]
- Ross, P.J. Taguchi Techniques for Quality Engineering; McGraw-Hill Companies, Inc.: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Roy, R.K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Willey & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Fraley, S.; Zalewski, J.; Oom, M.; Terrien, B. Design of experiments via Taguchi methods—orthogonal arrays. In Chemical Process Dynamics and Control; Woolf, P., Ed.; Libretext: Ann Arbor, MI, USA, 2022; Available online: https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Controls_ (accessed on 29 September 2022).
- Kuramochi, N.; Oomuro, Y. Robust design with direct product of the L18 orthogonal arrays. In Proceedings of the 2008 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, 27–29 October 2008; pp. 191–194. [Google Scholar]
- Kacker, R.N.; Lagergren, E.S.; Filliben, J.J. Taguchi’s orthogonal arrays are classical designs of experiments. J. Res. Natl. Inst. Stand. Technol. 1991, 96, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, W.; Shen, W.; Cui, X.; Shao, J. A new hybrid phase-field model for modeling mixed-mode cracking process in anisotropic plastic rock-like materials. Int. J. Plast. 2022, 157, 103395. [Google Scholar] [CrossRef]
- Ermolai, V.; Irimia, A. Influence of nozzle parameters in 3D printing under the manufacturing time. Bull. of the Polytech. Inst. of Iași. Mach. Constr. Sect. 2021, 67, 63–72. [Google Scholar] [CrossRef]
- Stavarache, R.C.; Ermolai, V.; Rîpanu, M.A.; Andrușcă, L.; Mareș, M.; Dodun, O. Infill pattern optimization of fused filament fabrication samples for enhanced mechanical properties. Sci. Bull. Ser. C Fascicle Mech. Tribol. Mach. Manuf. Technol. 2021, 35, 80–85. [Google Scholar]
- Ferretti, P.; Leon-Cardenas, C.; Santi, G.M.; Sali, M.; Ciotti, E.; Frizziero, L.; Donnici, G.; Liverani, A. Relationship between FDM 3D Printing Parameters Study: Parameter Optimization for Lower Defects. Polymers 2021, 13, 2190. [Google Scholar] [CrossRef] [PubMed]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining. A.4 F-DISTRIBUTION. 2022. Available online: https://www.oreilly.com/library/view/making-sense-of/9780470074718/appa-sec004.html (accessed on 28 August 2022).
- Crețu, G. Fundamentals of Experimental Research. In Laboratory Handbook; Asachi, G., Ed.; Technical University of Iași: Iași, Romania, 1992. (In Romanian) [Google Scholar]
Exp. Run | Input Factors | Output Factors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Joint Shape, j | Material Pairs, m | Neck Width, nw, mm | Neck Height, nh, mm | Socket Height, s, (mm) | No. of Walls, now | Line Width, l, (mm) | Overlap, o, mm | Avg. Force at Peak, F, kN | Avg. Displacement at Peak, L, mm | |
R1 | Omega | ABS-PA645 | 5 | 5 | 8 | 3 | 0.4 | 0 | 0.288 | 4.330 |
R2 | Omega | ABS-PA645 | 8 | 8 | 11 | 4 | 0.45 | 2 | 0.613 | 4.128 |
R3 | Omega | ABS-PA645 | 11 | 11 | 14 | 5 | 0.5 | 4 | 0.638 | 6.363 |
R4 | Omega | ABS-PETG | 5 | 5 | 11 | 4 | 0.5 | 4 | 1.628 | 2.253 |
R5 | Omega | ABS-PETG | 8 | 8 | 14 | 5 | 0.4 | 0 | 0.373 | 0.573 |
R6 | Omega | ABS-PETG | 11 | 11 | 8 | 3 | 0.45 | 2 | 1.278 | 1.640 |
R7 | Omega | PA645-PETG | 5 | 8 | 8 | 5 | 0.45 | 4 | 0.555 | 3.095 |
R8 | Omega | PA645-PETG | 8 | 11 | 11 | 3 | 0.5 | 0 | 0.148 | 4.448 |
R9 | Omega | PA645-PETG | 11 | 5 | 14 | 4 | 0.4 | 2 | 0.820 | 5.200 |
R10 | Dovetail | ABS-PA645 | 5 | 11 | 14 | 4 | 0.45 | 0 | 0.100 | 2.860 |
R11 | Dovetail | ABS-PA645 | 8 | 5 | 8 | 5 | 0.5 | 2 | 0.328 | 1.660 |
R12 | Dovetail | ABS-PA645 | 11 | 8 | 11 | 3 | 0.4 | 4 | 0.830 | 5.758 |
R13 | Dovetail | ABS-PETG | 5 | 8 | 14 | 3 | 0.5 | 2 | 0.728 | 0.975 |
R14 | Dovetail | ABS-PETG | 8 | 11 | 8 | 4 | 0.4 | 4 | 1.613 | 2.273 |
R15 | Dovetail | ABS-PETG | 11 | 5 | 11 | 5 | 0.45 | 0 | 0.175 | 0.810 |
R16 | Dovetail | PA645-PETG | 5 | 11 | 11 | 5 | 0.4 | 2 | 0.443 | 2.123 |
R17 | Dovetail | PA645-PETG | 8 | 5 | 14 | 3 | 0.45 | 4 | 0.738 | 5.070 |
R18 | Dovetail | PA645-PETG | 11 | 8 | 8 | 4 | 0.5 | 0 | 0.078 | 3.530 |
Parameter | Value | Parameter | Value |
---|---|---|---|
(1) Layer thickness (mm) | 0.2 | (11) Initial layer speed (mm/s) | 15 |
(2) No. of top/bottom layers | 5 | (12) Z Hop height (mm) | 1.6 |
(3) Left extruder seam alignment | Back left | (13) Retraction distance (mm) | 7 |
(4) Right extruder seam alignment | Back right | (14) Retraction speed (mm/s) | 35 |
(5) Infill pattern | Gyroid | (15)1 Fan speed (%) | 10|15|30 |
(6) Infill density (%) | 40 | (16) Brim | Yes |
(7) Printing temperature (°C) | 245 | (16) Brim width (mm) | 3 |
(8) Bed temperature (°C) | 65 | (17) Closed environment | Yes |
(9) Print speed (mm/s) | 30 | (18) Alternate mesh removal | Yes |
Source | DF | Seq SS | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Joint shape, j | 1 | 58.07 | 58.068 | 58.68 | 84.65 | 0.012 |
Materials pairs, m | 2 | 152.32 | 153.318 | 76.659 | 111.76 | 0.009 |
Neck width, nw | 2 | 2.19 | 2.190 | 1.095 | 1.60 | 0.385 |
Neck height, nh | 2 | 6.52 | 6.524 | 3.262 | 4.76 | 0.174 |
Socket height, s | 2 | 0.32 | 0.319 | 0.160 | 0.23 | 0.811 |
Number of walls, now | 2 | 24.70 | 24.701 | 12.351 | 18.01 | 0.053 |
Line width, l | 2 | 58.32 | 56.324 | 29.162 | 42.51 | 0.023 |
Overlap, o | 2 | 725.99 | 725.986 | 362.993 | 529.18 | 0.002 |
Residual error | 2 | 1.37 | 1.372 | 0.686 | ||
Total | 17 | 1030.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihalache, A.-M.; Ermolai, V.; Sover, A.; Nagîț, G.; Boca, M.-A.; Slătineanu, L.; Hrițuc, A.; Dodun, O.; Rîpanu, M.-I. Tensile Behavior of Joints of Strip Ends Made of Polymeric Materials. Polymers 2022, 14, 4990. https://doi.org/10.3390/polym14224990
Mihalache A-M, Ermolai V, Sover A, Nagîț G, Boca M-A, Slătineanu L, Hrițuc A, Dodun O, Rîpanu M-I. Tensile Behavior of Joints of Strip Ends Made of Polymeric Materials. Polymers. 2022; 14(22):4990. https://doi.org/10.3390/polym14224990
Chicago/Turabian StyleMihalache, Andrei-Marius, Vasile Ermolai, Alexandru Sover, Gheorghe Nagîț, Marius-Andrei Boca, Laurențiu Slătineanu, Adelina Hrițuc, Oana Dodun, and Marius-Ionuț Rîpanu. 2022. "Tensile Behavior of Joints of Strip Ends Made of Polymeric Materials" Polymers 14, no. 22: 4990. https://doi.org/10.3390/polym14224990
APA StyleMihalache, A.-M., Ermolai, V., Sover, A., Nagîț, G., Boca, M.-A., Slătineanu, L., Hrițuc, A., Dodun, O., & Rîpanu, M.-I. (2022). Tensile Behavior of Joints of Strip Ends Made of Polymeric Materials. Polymers, 14(22), 4990. https://doi.org/10.3390/polym14224990