Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Materials
2.3. Characterization
2.4. Excited State Lifetime Test
2.5. Theoretical Calculations
2.6. Solubility Measurements
2.7. ESR Experiments
2.8. Thermal Stability Measurements
2.9. RT-FTIR Measurements
2.10. Gibbs Free Energy Changes
2.11. Photolithography Performance Measurements for DFRs
3. Results and Discussion
3.1. Solubility of COXEs
3.2. Photophysical Properties of COXEs
3.3. Photochemistry Properties of COXEs
3.3.1. ESR Experiment
3.3.2. Steady-State Photolysis Analysis
3.3.3. Proposed Photolysis Mechanism
3.4. Thermal Stability of COXEs
3.5. Photopolymerization Kinetics for COXEs as Photoinitiators
3.5.1. Effect of Chemical Structure on Photopolymerization Kinetics
3.5.2. Effect of PI Concentration on Photopolymerization Kinetics
3.6. Photopolymerization Kinetics of COXEs as Photosensitizers
3.6.1. Photopolymerization Kinetics of Iod-PF6/COXE Systems
3.6.2. Photopolymerization Kinetics of BCIM/NPG/COXE Systems
3.6.3. Sensitization Mechanisms for COXEs
3.6.4. Photolithography of Dry Film Photoresist Using COXEs as a Coinitiator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Yeow, J.; Boyer, C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017, 4, 1700137. [Google Scholar] [CrossRef] [PubMed]
- Dumur, F. Recent advances on carbazole-based photoinitiators of polymerization. Eur. Polym. J. 2020, 125, 109503. [Google Scholar] [CrossRef]
- Ligon-Auer, S.C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polym. Chem. 2016, 7, 257–286. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Felipe, C.; Oliveira, J.; Etxebarria, I.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies. Adv. Mater. Technol. 2019, 4, 1800618. [Google Scholar] [CrossRef] [Green Version]
- Pagac, M.; Hajnys, J.; Ma, Q.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- González-Henríquez, C.M.; Sarabia-Vallejos, M.A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog. Polym. Sci. 2019, 94, 57–116. [Google Scholar] [CrossRef]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent Advances and Developments in Composite Dental Restorative Materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Kouamé, N.A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.; Remita, H. Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 2015, 14, 505–511. [Google Scholar] [CrossRef]
- Annabi, N.; Rana, D.; Shirzaei Sani, E.; Portillo-Lara, R.; Gifford, J.L.; Fares, M.M.; Mithieux, S.M.; Weiss, A.S. Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials 2017, 139, 229–243. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wang, F.; Wang, X.; Zhang, J.; Wang, D.; Huang, X. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater. Des. 2021, 202, 109588. [Google Scholar] [CrossRef]
- Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J.; Boyer, C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew. Chem. 2019, 131, 5224–5243. [Google Scholar] [CrossRef]
- Dietlin, C.; Schweizer, S.; Xiao, P.; Zhang, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.; Lalevée, J. Photopolymerization upon LEDs: New photoinitiating systems and strategies. Polym. Chem. 2015, 6, 3895–3912. [Google Scholar] [CrossRef]
- Dietlin, C.; Trinh, T.T.; Schweizer, S.; Graff, B.; Morlet-Savary, F.; Noirot, P.; Lalevée, J. New Phosphine Oxides as High Performance Near- UV Type I Photoinitiators of Radical Polymerization. Molecules 2020, 25, 1671. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Brunel, D.; Sun, K.; Zhang, Y.; Chen, H.; Xiao, P.; Dumur, F.; Lalevée, J. Novel Photoinitiators Based on Benzophenone-Triphenylamine Hybrid Structure for LED Photopolymerization. Macromol. Rapid Comm. 2020, 41, 2000460. [Google Scholar] [CrossRef]
- Li, Z.; Zou, X.; Zhu, G.; Liu, X.; Liu, R. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Appl. Mater. Inter. 2018, 10, 16113–16123. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Zhang, J.; Dumur, F.; Tehfe, M.A.; Morlet-Savary, F.; Graff, B.; Gigmes, D.; Fouassier, J.P.; Lalevée, J. Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Prog. Polym. Sci. 2015, 41, 32–66. [Google Scholar] [CrossRef]
- Dong, X.; Shen, W.; Hu, P.; Li, Z.; Liu, R.; Liu, X. Efficient Benzodioxole-based unimolecular photoinitiators: From synthesis to photopolymerization under UV-A and visible LED light irradiation. J. Appl. Polym. Sci. 2016, 133, 43239. [Google Scholar] [CrossRef]
- Li, J.; Hao, Y.; Zhong, M.; Tang, L.; Nie, J.; Zhu, X. Synthesis of furan derivative as LED light photoinitiator: One-pot, low usage, photobleaching for light color 3D printing. Dye Pigment. 2019, 165, 467–473. [Google Scholar] [CrossRef]
- Abdallah, M.; Hijazi, A.; Lin, J.; Graff, B.; Dumur, F.; Lalevée, J. Coumarin Derivatives as Photoinitiators in Photo-Oxidation and Photo-Reduction Processes and a Kinetic Model for Simulations of the Associated Polymerization Profiles. ACS Appl. Polym. Mater. 2020, 2, 2769–2780. [Google Scholar] [CrossRef]
- Abdallah, M.; Hijazi, A.; Graff, B.; Fouassier, J.; Rodeghiero, G.; Gualandi, A.; Dumur, F.; Cozzi, P.G.; Lalevée, J. Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis. Polym. Chem. 2019, 10, 872–884. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. Eur. Polym. J. 2021, 143, 110178. [Google Scholar] [CrossRef]
- Haas, M.; Radebner, J.; Eibel, A.; Gescheidt, G.; Stueger, H. Recent Advances in Germanium-Based Photoinitiator Chemistry. Chem. A Eur. J. 2018, 24, 8258–8267. [Google Scholar] [CrossRef]
- Hu, P.; Qiu, W.; Naumov, S.; Scherzer, T.; Hu, Z.; Chen, Q.; Knolle, W.; Li, Z. Conjugated Bifunctional Carbazole-Based Oxime Esters: Efficient and Versatile Photoinitiators for 3D Printing under One- and Two-Photon Excitation. ChemPhotoChem 2020, 4, 224–232. [Google Scholar] [CrossRef]
- Pang, Y.; Fan, S.; Wang, Q.; Oprych, D.; Feilen, A.; Reiner, K.; Keil, D.; Slominsky, Y.L.; Popov, S.; Zou, Y.; et al. NIR-Sensitized Activated Photoreaction between Cyanines and Oxime Esters: Free-Radical Photopolymerization. Angew. Chem. 2020, 132, 11537–11544. [Google Scholar] [CrossRef]
- Zhou, R.; Sun, X.; Mhanna, R.; Malval, J.; Jin, M.; Pan, H.; Wan, D.; Morlet-Savary, F.; Chaumeil, H.; Joyeux, C. Wavelength-Dependent, Large-Amplitude Photoinitiating Reactivity within a Carbazole-Coumarin Fused Oxime Esters Series. ACS Appl. Polym. Mater. 2020, 2, 2077–2085. [Google Scholar] [CrossRef]
- Qiu, W.; Li, M.; Yang, Y.; Li, Z.; Dietliker, K. Cleavable coumarin-based oxime esters with terminal heterocyclic moieties: Photobleachable initiators for deep photocuring under visible LED light irradiation. Polym. Chem. 2020, 11, 1356–1363. [Google Scholar] [CrossRef]
- Qiu, W.; Zhu, J.; Dietliker, K.; Li, Z. Polymerizable Oxime Esters: An Efficient Photoinitiator with Low Migration Ability for 3D Printing to Fabricate Luminescent Devices. ChemPhotoChem 2020, 4, 5296–5303. [Google Scholar] [CrossRef]
- Chen, S.; Jin, M.; Malval, J.; Fu, J.; Morlet-Savary, F.; Pan, H.; Wan, D. Substituted stilbene-based oxime esters used as highly reactive wavelength-dependent photoinitiators for LED photopolymerization. Polym. Chem. 2019, 10, 6609–6621. [Google Scholar] [CrossRef]
- Wang, W.; Jin, M.; Pan, H.; Wan, D. Remote effect of substituents on the properties of phenyl thienyl thioether-based oxime esters as LED-sensitive photoinitiators. Dye. Pigment. 2021, 192, 109435. [Google Scholar] [CrossRef]
- Guo, X.; Wang, W.; Wan, D.; Jin, M. Substituted Stilbene-based D-π-A and A-π-A type oxime esters as photoinitiators for LED photopolymerization. Eur. Polym. J. 2021, 156, 110617. [Google Scholar] [CrossRef]
- Kielesiński, A.; Gryko, D.T.; Sobolewski, A.L.; Morawski, O.W. Effect of conformational flexibility on photophysics of bis-coumarins. Phys. Chem. Chem. Phys. 2018, 20, 14491–14503. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, I.; Ortyl, J.; Popielarz, R. Mechanism of interaction of coumarin-based fluorescent molecular probes with polymerizing medium during free radical polymerization of a monomer. Polym. Test. 2016, 55, 310–317. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Hu, W.; Xia, H.; Zou, G.; Zhang, Q. Photo-controlled Hierarchical Assembly and Fusion of Coumarin-containing Polydiacetylene Vesicles. Macromol. Rapid Comm. 2013, 34, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fan, W.; Hong, C.; Pan, C. Synthesis and Characterization of Coumarin-Containing Cyclic Polymer and Its Photoinduced Coupling/Dissociation. Macromol. Rapid Comm. 2015, 36, 2192–2197. [Google Scholar] [CrossRef]
- Abdallah, M.; Hijazi, A.; Dumur, F.; Lalevée, J. Coumarins as Powerful Photosensitizers for the Cationic Polymerization of Epoxy-Silicones under Near-UV and Visible Light and Applications for 3D Printing Technology. Molecules 2020, 25, 2063. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Hijazi, A.; Graff, B.; Fouassier, J.; Dumur, F.; Lalevée, J. In-silico based development of photoinitiators for 3D printing and composites: Search on the coumarin scaffold. J. Photochem. Photobiol. A Chem. 2020, 400, 112698. [Google Scholar] [CrossRef]
- Nazir, R.; Danilevicius, P.; Ciuciu, A.I.; Chatzinikolaidou, M.; Gray, D.; Flamigni, L.; Farsari, M.; Gryko, D.T. π-Expanded Ketocoumarins as Efficient, Biocompatible Initiators for Two-Photon-Induced Polymerization. Chem. Mater. 2014, 26, 3175–3184. [Google Scholar] [CrossRef]
- Liu, Z.; Dumur, F. Recent advances on visible light Coumarin-based oxime esters as initiators of polymerization. Eur. Polym. J. 2022, 177, 111449. [Google Scholar] [CrossRef]
- Hirai, T.; Togo, H. Preparation and Synthetic Use of Polymer-Supported Acetoacetate Reagent. Synthesis 2005, 2005, 2664–2668. [Google Scholar] [CrossRef]
- Krishnan, K.G.; Sivakumar, R.; Thanikachalam, V.; Saleem, H.; Arockia Doss, M. Synthesis, spectroscopic investigation and computational study of 3-(1-(((methoxycarbonyl)oxy)imino)ethyl)-2H-chromen-2-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Yan, D. Hydrogen-Bonded Two-Component Ionic Crystals Showing Enhanced Long-Lived Room-Temperature Phosphorescence via TADF-Assisted Förster Resonance Energy Transfer. Adv. Funct. Mater. 2019, 29, 1807599. [Google Scholar] [CrossRef]
- Schmitz, C.; Halbhuber, A.; Keil, D.; Strehmel, B. NIR-Sensitized Photoinitiated Radical Polymerization and Proton Generation with Cyanines and LED Arrays. Prog. Org. Coat. 2016, 100, 32–46. [Google Scholar] [CrossRef]
- Rehm, D.; Weller, A. Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Isr. J. Chem. 1970, 8, 259–271. [Google Scholar] [CrossRef]
- Ding, Y.; Xin, Y.; Zhang, Q.; Zou, Y. Acrylic resins with oxetane pendant groups for free radical and cationic dual-curing photoresists. Mater. Des. 2022, 213, 110370. [Google Scholar] [CrossRef]
- Yi, L.; Li, C.; Huang, W.; Yan, D. Soluble polyimides from 4,4′-diaminodiphenyl ether with one or two tert-butyl pedant groups. Polymer 2015, 80, 67–75. [Google Scholar] [CrossRef]
- Kenry; Chen, C.; Liu, B. Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nat. Commun. 2019, 10, 2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzrati-Zerelli, M.; Kirschner, J.; Fik, C.P.; Maier, M.; Dietlin, C.; Morlet-Savary, F.; Fouassier, J.P.; Becht, J.; Klee, J.E.; Lalevée, J. Silyl Glyoxylates as a New Class of High Performance Photoinitiators: Blue LED Induced Polymerization of Methacrylates in Thin and Thick Films. Macromolecules 2017, 50, 6911–6923. [Google Scholar] [CrossRef]
- Wang, W.; Jin, M.; Pan, H.; Wan, D. Phenylthioether thiophene-based oxime esters as novel photoinitiators for free radical photopolymerization under LED irradiation wavelength exposure. Prog. Org. Coat. 2021, 151, 106019. [Google Scholar] [CrossRef]
- Ma, X.; Cao, D.; Fu, H.; You, J.; Gu, R.; Fan, B.; Nie, J.; Wang, T. Multicomponent photoinitiating systems containing arylamino oxime ester for visible light photopolymerization. Prog. Org. Coat. 2019, 135, 517–524. [Google Scholar] [CrossRef]
- Janzen, E.G.; Blackburn, B.J. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique. J. Am. Chem. Soc. 1968, 90, 5909–5910. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, S.; Gao, Y.; Nie, J.; Du, H.; Sun, F. Photochromic Polymers Based on Fluorophenyl Oxime Ester Photoinitiators as Photoswitchable Molecules. Macromolecules 2020, 53, 5701–5710. [Google Scholar] [CrossRef]
- Fast, D.E.; Lauer, A.; Menzel, J.P.; Kelterer, A.; Gescheidt, G.; Barner-Kowollik, C. Wavelength-Dependent Photochemistry of Oxime Ester Photoinitiators. Macromolecules 2017, 50, 1815–1823. [Google Scholar] [CrossRef]
- Khudyakov, I.V. Transient free radicals in viscous solvents. Res. Chem. Intermediat. 2012, 39, 781–804. [Google Scholar] [CrossRef]
- Begantsova, Y.E.; Zvagelsky, R.; Baranov, E.V.; Chubich, D.A.; Chechet, Y.V.; Kolymagin, D.A.; Pisarenko, A.V.; Vitukhnovsky, A.G.; Chesnokov, S.A. Imidazole-containing photoinitiators for fabrication of sub-micron structures by 3D two-photon polymerization. Eur. Polym. J. 2021, 145, 110209. [Google Scholar] [CrossRef]
- Chen, Y.; Kuo, Y.; Ho, T. Photo-polymerization properties of type-II photoinitiator systems based on 2-chlorohexaaryl biimidazole (o-Cl-HABI) and various N-phenylglycine (NPG) derivatives. Photoch. Photobio. Sci. 2020, 18, 190–197. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y. Triphenylamine-hexaarylbiimidazole derivatives as hydrogen-acceptor photoinitiators for free radical photopolymerization under UV and LED light. Polym. Chem. 2020, 11, 154–1513. [Google Scholar] [CrossRef]
- Wentao, W.; Guiping, M.; Jian, L.; Dawei, F.; Xiaochun, Q.; Jun, N.; Kemin, W. Photopolymerization kinetics of 2, 2′, 4-(2-chlorophenyl)-5-(3, 4-dimethoxyphenyl)-4′, 5′-diphenyl-1, 1′-biimidazole containing initiator system. Imaging Sci. Photochem. 2013, 31, 53–62. [Google Scholar] [CrossRef]
- Allonas, X.; Fouassier, J.P.; Kaji, M.; Murakami, Y. Excited state processes in a four-component photosensitive system based on a bisimidazole derivative Dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday. Photochem. Photobiol. Sci. 2003, 2, 224. [Google Scholar] [CrossRef]
- Krossing, I.; Raabe, I. Noncoordinating Anions—Fact or Fiction? A Survey of Likely Candidates. Angew. Chem. Int. Ed. 2004, 43, 2066–2090. [Google Scholar] [CrossRef] [PubMed]
- Rahal, M.; Graff, B.; Toufaily, J.; Hamieh, T.; Noirbent, G.; Gigmes, D.; Dumur, F.; Lalevée, J. 3-Carboxylic Acid and Formyl-Derived Coumarins as Photoinitiators in Photo-Oxidation or Photo-Reduction Processes for Photopolymerization upon Visible Light: Photocomposite Synthesis and 3D Printing Applications. Molecules 2021, 26, 1753. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Li, W.; Pi, H.; Liu, H.; Chen, H.; Li, P.; Jiang, X. Trace amounts of mercaptans with key roles in forming an efficient three-component photoinitiation system for holography. Mater. Today Chem. 2022, 26, 100999. [Google Scholar] [CrossRef]
- Vlnieska, V.; Mikhaylov, A.; Zakharova, M.; Blasco, E.; Kunka, D. Epoxy Resins for Negative Tone Photoresists. Polymers 2019, 11, 1457. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Akitoshi, T.; Katou, S.; Murakami, Y.; Yin, J.; Jiang, X. 9,10-Dithio/oxo-Anthracene as a Novel Photosensitizer for Photoinitiator Systems in Photoresists. Macromol. Chem. Phys. 2019, 220, 1900152. [Google Scholar] [CrossRef]
Pis | λmax (nm) | ε (×104 M−1·cm−1) | λem (nm) | Stokes Shift (cm−1) | Φf (%) | τs (ns) |
---|---|---|---|---|---|---|
COXE-C | 297 | 1.63 | 443 | 11096.67 | 2.5 | 0.33 |
COXE-O | 358 | 0.56 | 483 | 7229.03 | 3.4 | 2.08 |
COXE-N | 415 | 0.22 | 628 | 8172.83 | 0.6 | 1512.90 |
COXE-S | 369 | 0.40 | 517 | 7757.91 | 4.7 | 1.91 |
PIs | Excited Singlet Transition | πabs (nm) | f | Type | Main Transitions (%) |
---|---|---|---|---|---|
COXE-C | S1 | 341 | 0.2658 | π→π* | H→L (85.9%) |
S2 | 315 | 0.3453 | π→π* | H−1→L (83.9%) | |
COXE-O | S1 | 381 | 0.1100 | π→π* | H→L (97.3%) |
S2 | 313 | 0.4667 | π→π* | H−1→L (94.8%) | |
COXE-N | S1 | 471 | 0.0648 | π→π* | H→L (99.1%) |
S2 | 318 | 0.4454 | π→π* | H−1→L (91.6%) | |
COXE-S | S1 | 407 | 0.0630 | π→π* | H→L (98.3%) |
S2 | 316 | 0.5179 | π→π* | H−1→L (96.0%) |
Emission Wavelength of the LED | OXE-02 | OXE-03 | COXE-C | COXE-O | COXE-N | COXE-S |
---|---|---|---|---|---|---|
365 nm | 85.9 a | 74.9 a | 72.7 a | 87.7 a | 0.27 a | 86.5 a |
385 nm | 92.2 a | 78.1 a | 22.5 a | 93.1 a | 0.43 a | 89.3 a |
400 nm | 21.1 b | 93.7 b | 4.79 b | 82.6 b | 1.3 b | 92.1 b |
425 nm | 0.967 c | 87.3 c | 0 c | 82.1 c | 0 c | 84.4 c |
450 nm | 0 c | 3.26 c | 0 c | 49.5 c | 0.13 c | 73.3 c |
Eox (V) | Ered (V) | ES1 (eV) | ΔGet (eV) (Iod-PF6/COXE) | ΔGet (eV) (COXE/NPG) | ΔGet (eV) (BCIM/COXE) | |
---|---|---|---|---|---|---|
COXE-C | 2.18 | −1.15 | 3.13 | −0.39 | −0.95 | 0.52 |
COXE-O | 1.85 | −1.13 | 2.88 | −0.48 | −0.72 | 0.44 |
COXE-N | 1.04 | −1.17 | 2.42 | −0.82 | −0.22 | 0.09 |
COXE-S | 1.60 | −1.06 | 2.81 | −0.66 | −0.72 | 0.26 |
IS-PF6 | −0.56 | |||||
NPG | 1.03 | |||||
BCIM | −1.47 |
Coinitiators | Photosensitivity (mJ·cm−2) | ΔEab | Resolution (μm) | Adhesion (μm) |
---|---|---|---|---|
COXE-O | 21 | 8.57 | 37.5 | 22.5 |
COXE-S | 21 | 9.38 | 37.5 | 22.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Sun, X.; He, X.; Pang, Y.; Xin, Y.; Ding, Y.; Zou, Y. Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation. Polymers 2022, 14, 4588. https://doi.org/10.3390/polym14214588
Fan S, Sun X, He X, Pang Y, Xin Y, Ding Y, Zou Y. Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation. Polymers. 2022; 14(21):4588. https://doi.org/10.3390/polym14214588
Chicago/Turabian StyleFan, Shuheng, Xun Sun, Xianglong He, Yulian Pang, Yangyang Xin, Yanhua Ding, and Yingquan Zou. 2022. "Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation" Polymers 14, no. 21: 4588. https://doi.org/10.3390/polym14214588
APA StyleFan, S., Sun, X., He, X., Pang, Y., Xin, Y., Ding, Y., & Zou, Y. (2022). Coumarin Ketoxime Ester with Electron-Donating Substituents as Photoinitiators and Photosensitizers for Photopolymerization upon UV-Vis LED Irradiation. Polymers, 14(21), 4588. https://doi.org/10.3390/polym14214588