Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review
Abstract
:1. Introduction
Delamination Modes
- a = crack length (delamination length);
- N = number of cycles;
- da/dN = fatigue crack growth rate;
- K = difference in the Mode I stress intensity factors (maximum and minimum);
- A, m =material constants for curve-fitted power law.
2. Mode I Fatigue Behaviour of Various Preforms Structures Used in Textile Composites
2.1. Unidirectional Composites
2.2. Multidirectional Laminated Composites
2.3. 3D Woven Composites
2.4. Hybrid Composites
3. Failure Modes in Composite under Fatigue Loading
3.1. Failure in Fibres
3.2. Failure in Matrix and Interface
4. Factors Affecting Mode I Fatigue Behaviour
4.1. Effect of Fibre Bridging
- represents crack extension length;
- is crack development rate;
- is strain energy release rate range;
- is stress ratio and is the compliance of the DCB specimen.
4.2. Effect of Temperature
4.3. Effect of Load/Stress Ratio
5. Numerical Studies on Mode I Fatigue Delamination
6. Testing Technique
7. Methods to Improve Mode I Fatigue Delamination
7.1. Matrix Toughening/Particles Interlayering
7.2. Nanotubes/Nanofibres Interleaving
7.3. Z-Pinning
Fibre/Resin | Functional Material | Property | Improvement | Reference |
---|---|---|---|---|
Carbon/epoxy | Inomer interleaf | Fatigue threshold | 3 times better | [55] |
Carbon/epoxy | Polyamide nanofibres | Fatigue threshold | 90 %improvement | [96] |
Carbon/epoxy | 50 µm epoxy interleaf | Fatigue threshold | No improvement | [16] |
Carbon/epoxy | 0.7 weight% Carbon nano fibres | Fatigue threshold | 6 times> | [103] |
Carbon/epoxy | 0.3 weight% multi walled carbon nanotube | cycles to failure | 3.8 times> | [104] |
Glass/epoxy | 1 weight% carbon nanotube | Fatigue threshold | Slight improvement | [105] |
Glass/epoxy | 2 volume % z pins by | Fatigue threshold | 15 times> | [112] |
Glass/epoxy | 2 volume % z pins by | Strain energy release rate range | 13–15 times> | [114] |
8. Summary and Future Directions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Siddique, A.; Sun, B.; Gu, B. Structural Influences of Two-Dimensional and Three-Dimensional Carbon/Epoxy Composites on Mode I Fracture Toughness Behaviors with Rate Effects on Damage Evolution. J. Ind. Text. 2020. Available online: chrome-extension://dagcmkpagjlhakfdhnbomgmjdpkdklff/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fjournals.sagepub.com%2Fdoi%2Fpdf%2F10.1177%2F1528083718819871 (accessed on 12 January 2021). [CrossRef]
- Siddique, A.; Sun, B.; Gu, B. Finite element modeling on fracture toughness of 3D angle-interlock woven carbon/epoxy composites at microstructure level. Mech. Adv. Mater. Struct. 2021, 28, 849–860. [Google Scholar] [CrossRef]
- Gao, X.; Siddique, A.; Sun, B.; Gu, B. Effect of braiding angle on dynamic mechanical properties of 3-D braided rectangular composites under multiple impact compressions. J. Compos. Mater. 2019, 53, 1827–1846. [Google Scholar] [CrossRef]
- Siddique, A.; Abid, S.; Shafiq, F.; Nawab, Y.; Wang, H.; Shi, B.; Saleemi, S.; Sun, B. Mode I fracture toughness of fiber-reinforced polymer composites: A review. J. Ind. Text. 2021, 50, 1165–1192. [Google Scholar] [CrossRef]
- Siddique, A.; Iqbal, Z.; Nawab, Y.; Shaker, K. A review of joining techniques for thermoplastic composite materials. J. Thermoplast. Compos. Mater. 2022. [Google Scholar] [CrossRef]
- Miah, M.S.; Yu, J.; Yang, Y.; Memon, H.; Rashid, M.A. Durability and notch sensitivity analysis of environmental ageing induced glass fibre mat and kenaf fibre mat-reinforced composites. J. Ind. Text. 2021, 51, 24–47. [Google Scholar] [CrossRef]
- Raju, I.S.; O’Brien, T.K. Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria. In Delamination Behaviour of Composites; Sridharan, S., Ed.; Woodhead Publishing: Sawston, UK, 2008; pp. 3–27. [Google Scholar]
- Atodaria, D.R.; Putatunda, S.K.; Mallick, P.K. Delamination growth behavior of a fabric reinforced laminated composite under mode I fatigue. J. Eng. Mater. Technol. Trans. ASME 1999, 121, 381–385. [Google Scholar] [CrossRef]
- Ramírez, F.M.G.; Garpelli, F.P.; Sales, R.D.C.M.; Candido, G.M.; Arbelo, M.A.; Shiino, M.Y.; Donadon, M.V. Experimental characterization of Mode I fatigue delamination growth onset in composite joints: A comparative study. Mater. Des. 2018, 160, 906–914. [Google Scholar] [CrossRef]
- Bonhomme, J.; Argüelles, A.; Viña, J.; Viña, I. Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites. Polym. Test. 2009, 28, 612–617. [Google Scholar] [CrossRef]
- Brunner, A.J.; Stelzer, S.; Pinter, G.; Terrasi, G.P. Cyclic fatigue delamination of carbon fiber-reinforced polymer-matrix composites: Data analysis and design considerations. Int. J. Fatigue 2016, 83, 293–299. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, L.; Zhao, L.; Fei, B. Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading. Int. J. Fatigue 2012, 40, 7–15. [Google Scholar] [CrossRef]
- Khan, R.; Alderliesten, R.; Badshah, S.; Benedictus, R. Effect of stress ratio or mean stress on fatigue delamination growth in composites: Critical review. Compos. Struct. 2015, 124, 214–227. [Google Scholar] [CrossRef]
- Brunner, A.J.; Murphy, N.; Pinter, G. Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions. Eng. Fract. Mech. 2009, 76, 2678–2689. [Google Scholar] [CrossRef]
- Brunner, A.J.; Stelzer, S.; Pinter, G.; Terrasi, G.P. Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure. Int. J. Fatigue 2013, 50, 57–62. [Google Scholar] [CrossRef]
- Hojo, M.; Ando, T.; Tanaka, M.; Adachi, T.; Ochiai, S.; Endo, Y. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. Int. J. Fatigue 2006, 28, 1154–1165. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A critical analysis of crack propagation laws. J. Fluids Eng. Trans. ASME 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Martin, R.H.; Murri, G.B. Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites. In Composite Materials: Testing and Design; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- Vassilopoulos, A.P.; Keller, T. Introduction to the Fatigue of Fiber-Reinforced Polymer Composites. In Fatigue of Fiber-Reinforced Composites; Springer: London, UK, 2001; pp. 1–23. [Google Scholar] [CrossRef]
- Argüelles, A.; Viña, J.; Canteli, A.F.; Castrillo, M.A.; Bonhomme, J. Interlaminar crack initiation and growth rate in a carbon-fibre epoxy composite under mode-I fatigue loading. Compos. Sci. Technol. 2008, 68, 2325–2331. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.H.; Kumar, G.V. Fatigue Performance and damage mechanisms of Reinforced Polymer Composites—A Review. Int. Res. J. Eng. Technol. 2016, 11, 799–805. [Google Scholar]
- Tate, J.S.; Akinola, A.T.; Espinoza, S.; Gaikwad, S.; Kannabiran Vasudevan, D.K. Tension–tension fatigue performance and stiffness degradation of nanosilica-modified glass fiber-reinforced composites. J. Compos. Mater. 2017, 52, 823–834. [Google Scholar] [CrossRef]
- Carvelli, V.; Gramellini, G.; Lomov, S.; Bogdanovich, A.; Mungalov, D.; Verpoest, I. Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites. Compos. Sci. Technol. 2010, 70, 2068–2076. [Google Scholar] [CrossRef]
- Rudov-Clark, S.; Mouritz, A.P. Tensile fatigue properties of a 3D orthogonal woven composite. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1018–1024. [Google Scholar] [CrossRef]
- Mouritz, A.P. Tensile fatigue properties of 3D composites with through-thickness reinforcement. Compos. Sci. Technol. 2008, 68, 2503–2510. [Google Scholar] [CrossRef]
- Fan, W.; Dang, W.; Liu, T.; Li, J.; Xue, L.; Yuan, L.; Dong, J. Fatigue behavior of the 3D orthogonal carbon/glass fibers hybrid composite under three-point bending load. Mater. Des. 2019, 183, 1–9. [Google Scholar] [CrossRef]
- Koricho, E.G.; Belingardi, G.; Beyene, A.T. Bending fatigue behavior of twill fabric E-glass/epoxy composite. Compos. Struct. 2014, 111, 169–178. [Google Scholar] [CrossRef]
- Hojo, M.; Tanaka, K.; Gustafson, C.G.; Hayashi, R. Effect of stress ratio on near-threshold propagation of delimination fatigue cracks in unidirectional CFRP. Compos. Sci. Technol. 1987, 29, 273–292. [Google Scholar] [CrossRef]
- Bak, B.L.V.; Sarrado, C.; Turon, A.; Costa, J. Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods. Appl. Mech. Rev. 2014, 66, 060803. [Google Scholar] [CrossRef]
- Shivakumar, K.; Chen, H.; Akangah, P.; Lingaiah, S. Polymer nanofabric interleaved composite laminates. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, USA, 4–7 May 2009; pp. 1608–1621. [Google Scholar] [CrossRef]
- Khan, R.; Alderliesten, R.; Benedictus, R. Two-parameter model for delamination growth under mode I fatigue loading (Part B: Model development). Compos. Part A Appl. Sci. Manuf. 2014, 65, 201–210. [Google Scholar] [CrossRef]
- Stelzer, S.; Brunner, A.J.; Argüelles, A.; Murphy, N.; Cano, G.M.; Pinter, G. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: Results from ESIS TC4 round-robins. Eng. Fract. Mech. 2014, 116, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Murri, G.B. Effect of data reduction and fiber-bridging on Mode I delamination characterization of unidirectional composites. J. Compos. Mater. 2013, 48, 2413–2424. [Google Scholar] [CrossRef]
- Cartié, D.D.R.; Laffaille, J.M.; Partridge, I.K.; Brunner, A.J. Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinning. Eng. Fract. Mech. 2009, 18, 2834–2845. [Google Scholar] [CrossRef] [Green Version]
- Nakai, Y.; Hiwa, C. Effects of loading frequency and environment on delamination fatigue crack growth of CFRP. Int. J. Fatigue 2002, 24, 161–170. [Google Scholar] [CrossRef]
- Kenane, M.; Benmedakhene, S.; Azari, Z. Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading. Fatigue Fract. Eng. Mater. Struct. 2010, 33, 284–293. [Google Scholar] [CrossRef]
- Kenane, M. Delamination Growth in Unidirectional Glass / Epoxy Composite Under Static and Fatigue Loads. Phys. Procedia 2009, 2, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Vauthier, E.; Abry, J.C.; Bailliez, T.; Chateauminois, A. Interactions between hygrothermal ageing and fatigue damage in unidirectional glass/epoxy composites. Compos. Sci. Technol. 1998, 58, 687–692. [Google Scholar] [CrossRef]
- Pipes, R.B.; Pagano, N.J. The Influence of Stacking Sequence on Laminate Strength. In Mechanics of Composite Materials; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Ding, Y.Q.; Yan, Y.; McIlhagger, R.; Brown, D. Comparison of the fatigue behaviour of 2-D and 3-D woven fabric reinforced composites. J. Mater. Process. Technol. 1995, 55, 171–177. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, B.; Hallett, S.R. Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading. Compos. Struct. 2018, 189, 160–176. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Zhang, J.; Zhao, L.; Bao, R.; Yang, H.; Fei, B. Mode I delamination growth of multidirectional composite laminates under fatigue loading. J. Compos. Mater. 2011, 45, 1077–1090. [Google Scholar] [CrossRef]
- Chocron, T.; Banks-Sills, L. Nearly Mode I Fracture Toughness and Fatigue Delamination Propagation in a Multidirectional Laminate Fabricated by a Wet-Layup. Phys. Mesomech. 2019, 22, 107–140. [Google Scholar] [CrossRef]
- Banks-Sills, L.; Simon, I.; Chocron, T. Multi-directional composite laminates: Fatigue delamination propagation in mode I—A comparison. Int. J. Fract. 2019, 219, 175–185. [Google Scholar] [CrossRef]
- Gao, X.; Tao, N.; Yang, X.; Wang, C.; Xu, F. Quasi-static three-point bending and fatigue behavior of 3-D orthogonal woven composites. Compos. Part B Eng. 2019, 159, 173–183. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Mao, Y.; Memon, H.; Qiu, Y.; Wei, Y.; Liu, W. A Comparative Study on Interlaminar Properties of L-shaped Two-Dimensional (2D) and Three-Dimensional (3D) Woven Composites. Appl. Compos. Mater. 2019, 26, 723–744. [Google Scholar] [CrossRef]
- Hu, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites. Materials 2020, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S.; Jiang, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. Effects of styrene-acrylic sizing on the mechanical properties of carbon fiber thermoplastic towpregs and their composites. Molecules 2018, 23, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, A.; Sun, B.; Gu, B. Effect of pre-crack length on Mode I fracture toughness of 3-D angle-interlock woven composites from finite element analyses. J. Text. Inst. 2019, 110, 1445–1458. [Google Scholar] [CrossRef]
- Stegschuster, G.; Pingkarawat, K.; Wendland, B.; Mouritz, A.P. Experimental determination of the mode i delamination fracture and fatigue properties of thin 3D woven composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 308–315. [Google Scholar] [CrossRef]
- Abbasi, S.; Ladani, R.B.; Wang, C.H.; Mouritz, A.P. Improving the delamination fatigue resistance of composites by 3D woven metal and composite Z-filaments. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106440. [Google Scholar] [CrossRef]
- Maillet, I.; Michel, L.; Rico, G.; Fressinet, M.; Gourinat, Y. A new test methodology based on structural resonance for mode I fatigue delamination growth in an unidirectional composite. Compos. Struct. 2013, 97, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Coronado, P.; Viña, J.A.; Argüelles, A.; Sánchez, S. Fractographic Analysis of the Temperature Influence in the Mode I Fatigue Delamination of Carbon/Epoxy Composites. Proceedings 2018, 2, 1477. [Google Scholar] [CrossRef] [Green Version]
- Coronado, P.; Argüelles, A.; Viña, J.; Mollón, V.; Viña, I. Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination. Int. J. Solids Struct. 2012, 49, 2934–2940. [Google Scholar] [CrossRef]
- Hojo, M.; Matsuda, S.; Tanaka, M.; Ochiai, S.; Murakami, A. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Compos. Sci. Technol. 2006, 66, 665–675. [Google Scholar] [CrossRef]
- Argüelles, A.; Viña, J.; Fernández-Canteli, A.; Viña, I.; Bonhomme, J. Influence of the matrix constituent on mode i and mode II delamination toughness in fiber-reinforced polymer composites under cyclic fatigue. Mech. Mater. 2011, 43, 62–67. [Google Scholar] [CrossRef]
- Ladani, R.B.; Wang, C.H.; Mouritz, A.P. Delamination fatigue resistant three-dimensional textile self-healing composites. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105626. [Google Scholar] [CrossRef]
- Ladani, R.B.; Nguyen, A.T.T.; Wang, C.H.; Mouritz, A.P. Mode II interlaminar delamination resistance and healing performance of 3D composites with hybrid z-fibre reinforcement. Compos. Part A Appl. Sci. Manuf. 2019, 120, 21–32. [Google Scholar] [CrossRef]
- Ladani, R.B.; Pingkarawat, K.; Nguyen, A.T.T.; Wang, C.H.; Mouritz, A.P. Delamination toughening and healing performance of woven composites with hybrid z-fibre reinforcement. Compos. Part A Appl. Sci. Manuf. 2018, 110, 258–267. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Bhat, T.; Craze, D.A.; Wang, C.H.; Varley, R.J.; Mouritz, A.P. Healing of carbon fibre–epoxy composites using thermoplastic additives. Polym. Chem. 2013, 4, 5007–5015. [Google Scholar] [CrossRef]
- Talreja, R. Fatigue of Composite Materials: Damage Mechanisms and Fatigue-Life Diagrams. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1981, 378, 461–475. [Google Scholar] [CrossRef]
- Thom, H. A review of the biaxial strength of fibre-reinforced plastics. Compos. Part A Appl. Sci. Manuf. 1998, 29, 869–886. [Google Scholar] [CrossRef]
- Yao, L.; Sun, Y.; Guo, L.; Lyu, X.; Zhao, M.; Jia, L.; Alderliestene, R.C.; Benedictuse, R. Mode I fatigue delamination growth with fibre bridging in multidirectional composite laminates. Eng. Fract. Mech. 2018, 189, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Niu, Z.; Jin, B.C.; Sun, B.; Gu, B. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites. J. Reinf. Plast. Compos. 2012, 31, 935–945. [Google Scholar] [CrossRef]
- Fracture Surface Characterization of Commercial Graphite/Epoxy Systems/AG. Miller, AL. Wingert—Penn State University Libraries Catalog. Available online: https://catalog.libraries.psu.edu/catalog/28003415 (accessed on 24 March 2022).
- Franz, H.E. Mikrofraktographie an faserverstärktenVerbundwerkstoffen*)/Microfractography of Fibre Reinforced Composite Materials*). Pract. Metallogr. 1991, 28, 404–419. [Google Scholar] [CrossRef]
- Greenhalgh, E. Faiure Analysis and Fractrography of Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Shindo, Y.; Inamoto, A.; Narita, F.; Horiguchi, K. Mode I fatigue delamination growth in GFRP woven laminates at low temperatures. Eng. Fract. Mech. 2006, 73, 2080–2090. [Google Scholar] [CrossRef]
- Yao, L.; Alderliesten, R.C.; Benedictus, R. The effect of fibre bridging on the Paris relation for mode I fatigue delamination growth in composites. Compos. Struct. 2016, 140, 125–135. [Google Scholar] [CrossRef]
- Yao, L.; Sun, Y.; Alderliesten, R.C.; Benedictus, R.; Zhao, M. Stress ratio dependence of fibre bridging significance in mode I fatigue delamination growth of composite laminates. Composites Part A 2017, 95, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Alderliesten, R. Fatigue delamination of composite materials—Approach to exclude large scale fibre bridging. IOP Conf. Ser. Mater. Sci. Eng. 2018, 388, 012002. [Google Scholar] [CrossRef]
- Coronado, P.; Argüelles, A.; Viña, J.; Viña, I. Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fibre/epoxy composites under fatigue loading. Compos. Struct. 2014, 112, 188–193. [Google Scholar] [CrossRef]
- Sjo, A.; Asp, L.E. Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading. Int. J. Fatigue 2002, 24, 179–184. [Google Scholar]
- Androuin, G.; Michel, L.; Maillet, I.; Gong, X. Characterization of fatigue delamination growth under mode I and II: Effects of load ratio and load history. Eng. Fract. Mech. 2018, 203, 172–185. [Google Scholar] [CrossRef]
- Andersons, J.; Hojo, M.; Ochiai, S. Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates. Int. J. Fatigue 2004, 26, 597–604. [Google Scholar] [CrossRef]
- Shivakumar, K.; Chen, H.; Abali, F.; Le, D.; Davis, C. A total fatigue life model for mode i delaminated composite laminates. Int. J. Fatigue 2006, 28, 33–42. [Google Scholar] [CrossRef]
- Krueger, R.; Deobald, L.R.; Mabson, G.E.; Engelstad, S.; Engelstad, S.; Prabhakar, M.; Gurvich, M.; Seneviratne, W.; Perera, S.; O’Brien, T.K.; et al. Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis; NASA: Washington, DC, USA, 2017. [Google Scholar]
- Orifici, A.C.; Krueger, R. Benchmark assessment of automated delamination propagation capabilities in finite element codes for static loading. Finite Elem. Anal. Des. 2012, 54, 28–36. [Google Scholar] [CrossRef]
- Grogan, D.M.; Leen, S.B.; Brádaigh, C.M.Ó. An XFEM-based methodology for fatigue delamination and permeability of composites. Compos. Struct. 2014, 107, 205–218. [Google Scholar] [CrossRef]
- Sosa, J.L.C.; Karapurath, N. Delamination modelling of GLARE using the extended finite element method. Compos. Sci. Technol. 2012, 72, 788–791. [Google Scholar] [CrossRef]
- Zarrinzadeh, H.; Kabir, M.Z.; Deylami, A. Experimental and numerical fatigue crack growth of an aluminium pipe repaired by composite patch. Eng. Struct. 2017, 133, 24–32. [Google Scholar] [CrossRef]
- Teimouri, F.; Heidari-Rarani, M.; Aboutalebi, F.H. An XFEM-VCCT coupled approach for modeling mode I fatigue delamination in composite laminates under high cycle loading. Eng. Fract. Mech. 2021, 249, 107760. [Google Scholar] [CrossRef]
- Skvortsov, Y.V.; Chernyakin, S.A.; Glushkov, S.V.; Perov, S.N. Simulation of fatigue delamination growth in composite laminates under mode I loading. Appl. Math. Model. 2016, 40, 7216–7224. [Google Scholar] [CrossRef]
- Monticeli, F.M.; Voorwald, H.J.C.; Cioffi, M.O.H. The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization. Compos. Struct. 2022, 286, 115291. [Google Scholar] [CrossRef]
- Tang, S.; Lemanski, S.; Zhang, X.; Ayre, D. Fatigue life prediction of z-fibre pinned composite laminate under mode I loading. Compos. Sci. Technol. 2019, 174, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, V.; Ghosh, A. Experimental and numerical investigation of Mode-I & Mode-II fatigue crack growth in unidirectional composites using XIGA-CZM approach. Int. J. Fatigue 2020, 134, 105461. [Google Scholar] [CrossRef]
- Rubiera, S.; Argüelles, A.; Viña, J.; Rocandio, C. Study of the phenomenon of fatigue delamination in a carbon-epoxy composite under mixed mode I/II fracture employing an asymmetric specimen. Int. J. Fatigue 2018, 114, 74–80. [Google Scholar] [CrossRef]
- De Moura, M.F.S.F.; Gonçalves, J.P.M. Cohesive zone model for high-cycle fatigue of adhesively bonded joints under mode I loading. Int. J. Solids Struct. 2014, 51, 1123–1131. [Google Scholar] [CrossRef]
- Ren, C.; Liu, T.; Siddique, A.; Sun, B.; Gu, B. High-speed visualizing and mesoscale modeling for deformation and damage of 3D angle-interlock woven composites subjected to transverse impacts. Int. J. Mech. Sci. 2018, 140, 119–132. [Google Scholar] [CrossRef]
- Harper, P.W.; Hallett, S.R. A fatigue degradation law for cohesive interface elements—Development and application to composite materials. Int. J. Fatigue 2010, 32, 1774–1787. [Google Scholar] [CrossRef] [Green Version]
- Teimouri, F.; Heidari-Rarani, M.; Aboutalebi, F.H. Finite element modeling of mode I fatigue delamination growth in composites under large-scale fiber bridging. Compos. Struct. 2021, 263, 113716. [Google Scholar] [CrossRef]
- Zhu, M.; Gorbatikh, L.; Fonteyn, S.; Van Hemelrijck, D.; Pyl, L.; Carrella-Payan, D.; Lomov, S.V. Digital image correlation assisted characterization of Mode I fatigue delamination in composites. Compos. Struct. 2020, 253, 112746. [Google Scholar] [CrossRef]
- ASTM-D6115; Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Document Center, Inc.: Belmont, CA, USA, 2019. Available online: https://www.document-center.com/standards/show/ASTM-D6115 (accessed on 27 March 2022).
- Al-Khudairi, O.; Hadavinia, H.; Waggott, A.; Lewis, E.; Little, C. Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates. Mater. Des. 2015, 66, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Stevanovic, D.; Kalyanasundaram, S.; Lowe, A.; Jar, P.-Y.B. Mode I and mode II delamination properties of glass/vinyl-ester composite toughened by particulate modified interlayers. Compos. Sci. Technol. 2003, 63, 1949–1964. [Google Scholar] [CrossRef]
- Brugo, T.M.; Minak, G.; Zucchelli, A.; Saghafi, H.; Fotouhi, M. An Investigation on the Fatigue based Delamination of Woven Carbon-epoxy Composite Laminates Reinforced with Polyamide Nanofibers. Procedia Eng. 2015, 109, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Odagiri, N.; Kishi, H.; Yamashita, M. Development of TORAYCA prepreg P2302 carbon fiber reinforced plastic for aircraft primary structural materials. Adv. Compos. Mater. 1996, 5, 249–254. [Google Scholar] [CrossRef]
- Oksman, K.; Wallström, L.; Berglund, L.A.; Filho, R.D.T. Morphology and mechanical properties of unidirectional sisal– epoxy composites. J. Appl. Polym. Sci. 2002, 84, 2358–2365. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Hinrichsen, E.; Tarverdi, K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II Analysis of composite microstructure and mechanical properties. J. Mater. Sci. 1997, 32, 1009–1015. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Reihmane, S.; Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 1996, 59, 1329–1336. [Google Scholar] [CrossRef]
- Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-based bio- and nanocomposites: A review. Int. J. Polym. Sci. 2011, 2011, 1–35. [Google Scholar] [CrossRef]
- Sarr, M.M.; Inoue, H.; Kosaka, T. Study on the Improvement of Interfacial Strength between Glass Fiber and Matrix Resin by Grafting Cellulose Nanofibers. Compos. Sci. Technol. 2021, 211, 108853. [Google Scholar] [CrossRef]
- Ladani, R.B.; Wu, S.; Kinloch, A.J.; Ghorbani, K.; Mouritz, A.P.; Wang, C.H. Enhancing fatigue resistance and damage characterisation in adhesively-bonded composite joints by carbon nanofibres. Compos. Sci. Technol. 2017, 149, 116–126. [Google Scholar] [CrossRef]
- Romhány, G.; Szebényi, G. Interlaminar fatigue crack growth behavior of MWCNT/carbon fiber reinforced hybrid composites monitored via newly developed acoustic emission method. Express Polym. Lett. 2012, 6, 572–580. [Google Scholar] [CrossRef]
- Grimmer, C.S.; Dharan, C.K.H. Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites. Compos. Sci. Technol. 2010, 70, 901–908. [Google Scholar] [CrossRef]
- Helmy, S.; Hoa, S.V. Tensile fatigue behavior of tapered glass fiber reinforced epoxy composites containing nanoclay. Compos. Sci. Technol. 2014, 102, 10–19. [Google Scholar] [CrossRef]
- Borrego, L.P.; Costa, J.D.M.; Ferreira, J.A.M.; Silva, H. Fatigue behaviour of glass fibre reinforced epoxy composites enhanced with nanoparticles. Compos. Part B Eng. 2014, 62, 65–72. [Google Scholar] [CrossRef]
- Grimmer, C.S.; Dharan, C.K.H. High-cycle Fatigue Life Extension of Glass Fiber/ Polymer Composites with Carbon Nanotubes. J. Wuhan Univ. Technol. Sci. Ed. 2009, 24, 167–173. [Google Scholar] [CrossRef]
- Genedy, M.; Daghash, S.; Soliman, E.; Taha, M.M.R. Improving fatigue performance of GFRP composite using Carbon Nanotubes. Fibers 2015, 3, 13–29. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Al-Haik, M. Carbon nanotube—Carbon fiber reinforced polymer composites with extended fatigue life. Compos. Part B Eng. 2019, 164, 537–545. [Google Scholar] [CrossRef]
- Hoffmann, J.; Scharr, G. Mode I delamination fatigue resistance of unidirectional and quasi-isotropic composite laminates reinforced with rectangular z-pins. Compos. Part A Appl. Sci. Manuf. 2018, 115, 228–235. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Mouritz, A.P. Improving the mode I delamination fatigue resistance of composites using z-pins. Compos. Sci. Technol. 2014, 92, 70–76. [Google Scholar] [CrossRef]
- Zhang, A.-Y.; Liu, H.-Y.; Mouritz, A.P.; Mai, Y.-W. Experimental study and computer simulation on degradation of z-pin reinforcement under cyclic fatigue. Compos. Part A Appl. Sci. Manuf. 2008, 39, 406–414. [Google Scholar] [CrossRef]
- Pegorin, F.; Pingkarawat, K.; Mouritz, A.P. Comparative study of the mode I and mode II delamination fatigue properties of z-pinned aircraft composites. Mater. Des. 2015, 65, 139–146. [Google Scholar] [CrossRef]
- Pegorin, F.; Pingkarawat, K.; Daynes, S.; Mouritz, A.P. Influence of z-pin length on the delamination fracture toughness and fatigue resistance of pinned composites. Composites Part B Eng. 2015, 78, 298–307. [Google Scholar] [CrossRef]
- Hojo, M.; Nakashima, K.; Kusaka, T.; Tanaka, M.; Adachi, T.; Fukuoka, T.; Ishibashi, M. Mode I fatigue delamination of Zanchor-reinforced CF/epoxy laminates. Int. J. Fatigue 2010, 32, 37–45. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Mouritz, A.P. Comparative study of metal and composite z-pins for delamination fracture and fatigue strengthening of composites. Eng. Fract. Mech. 2016, 154, 180–190. [Google Scholar] [CrossRef]
- Brugo, T.; Minak, G.; Zucchelli, A.; Yan, X.T.; Belcari, J.; Saghafi, H.; Palazzetti, R. Study on Mode I fatigue behaviour of Nylon 6,6 nanoreinforced CFRP laminates. Compos. Struct. 2017, 164, 51–57. [Google Scholar] [CrossRef]
Fibre/Matrix | Structure | Test/Specimen Type | Cyclic Stress Intensity Factor Range/Strain Energy Release Rate Range | Reference |
---|---|---|---|---|
Glass-Carbon/epoxy | Multidirectional | DCB | 51.8 N/m 139.5 N/m | [43] |
T700/M21 | Unidirectional | ASTMD 6115/DCB | 300 N/m | [52] |
Carbon/epoxy (3501-6) prepreg | Unidirectional | ASTM 6115-97/DCB | 101.99 J/m2 | [53,54] |
Carbon/epoxy (8552) prepreg | Unidirectional | ASTM 6115-97 | 124.50 J/m2 | [53,54] |
Carbon/epoxy-T800H/3900-2 | Unidirectional | DCB | 400 J/m2 | [55] |
Carbon/epoxy (AW 196), Carbon/epoxy (8552) | Unidirectional | ASTM D6115/DCB | 151–26.6 J/m2 | [56] |
Carbon/epoxy | 3D woven | DCB | 0.5–0.4 kJ/m2 | [50] |
Glass/epoxy | Laminated | DCB | 7–10 J/m2 | [8] |
Carbon-Glass/epoxy Prepreg | Multidirectional | ASTM D6115-97/DCB | 30.7, 56.1, 96.0, 331.0 N/m | [44] |
Carbon-Glass/epoxy Wet layup | Multidirectional | ASTM D6115-97/DCB | 51.5, 141.0 | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Umair, M.; Nawab, Y.; Latif, Z.; Ahmad, S.; Siddique, A.; Yang, H. Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review. Polymers 2022, 14, 4558. https://doi.org/10.3390/polym14214558
Gao X, Umair M, Nawab Y, Latif Z, Ahmad S, Siddique A, Yang H. Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review. Polymers. 2022; 14(21):4558. https://doi.org/10.3390/polym14214558
Chicago/Turabian StyleGao, Xingzhong, Muhammad Umair, Yasir Nawab, Zeeshan Latif, Sheraz Ahmad, Amna Siddique, and Hongyue Yang. 2022. "Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review" Polymers 14, no. 21: 4558. https://doi.org/10.3390/polym14214558
APA StyleGao, X., Umair, M., Nawab, Y., Latif, Z., Ahmad, S., Siddique, A., & Yang, H. (2022). Mode I Fatigue of Fibre Reinforced Polymeric Composites: A Review. Polymers, 14(21), 4558. https://doi.org/10.3390/polym14214558