Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Timolol Standards
3.2. Optical and Physical Properties
3.3. Swelling Kinetics
3.4. Drug Release Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The Number of People with Glaucoma Worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Schellack, N.; Schellack, G.; Bezuidenhout, S. Glaucoma: A Brief Review. SA Pharm. J. 2015, 82, 18–22. [Google Scholar]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Heikkinen, E. Pharmacokinetic and Methodological Insights into Ocular Drug Development. Ph.D. Thesis, The University of Eastern Finland, Kuopio, Finland, 2020. [Google Scholar]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Peppas, N.A. Biomedical Applications of Hydrogels Handbook; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Huynh, V.; Jesmer, A.H.; Shoaib, M.M.; Wylie, R.G. Influence of Hydrophobic Cross-Linkers on Carboxybetaine Copolymer Stimuli Response and Hydrogel Biological Properties. Langmuir 2019, 35, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Dudás, Z.; Len, A.; Ianăși, C.; Paladini, G. Structural Modifications Caused by the Increasing MTES Amount in Hybrid MTES/TEOS-Based Silica Xerogels. Mater. Charact. 2020, 167, 110519. [Google Scholar] [CrossRef]
- Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. PH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Engberts, J.B.F.N. Stimuli Response of Polysoap Hydrogels in Aqueous Solution and DC Electric Fields. Colloids Surf. A Physicochem. Eng. Asp. 2000, 169, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wang, R.; Geng, R.; Zhang, X.; Wang, F.; Jiao, T.; Yang, J.; Bai, Z.; Peng, Q. A Facile Preparation Method for New Two-Component Supramolecular Hydrogels and Their Performances in Adsorption, Catalysis, and Stimuli-Response. RSC Adv. 2019, 9, 22551–22558. [Google Scholar] [CrossRef] [Green Version]
- Peppas, N.A. Hydrogels in Medicine and Pharmacy: Fundamentals; Routledge Revivals; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hoffman, A.S. Conventional and Environmentally-Sensitive Hydrogels for Medical and Industrial Uses: A Review Paper. In Polymer Gels: Fundamentals and Biomedical Applications; DeRossi, D., Kajiwara, K., Osada, Y., Yamauchi, A., Eds.; Springer: Boston, MA, USA, 1991; pp. 289–297. [Google Scholar] [CrossRef]
- Wheeler, J.C.; Woods, J.A.; Cox, M.J.; Cantrell, R.W.; Watkins, F.H.; Edlich, R.F. Evolution of Hydrogel Polymers as Contact Lenses, Surface Coatings, Dressings, and Drug Delivery Systems. J. Long Term Eff. Med. Implants 1996, 6, 207–217. [Google Scholar]
- Mondal, A.K.; Wu, S.; Xu, D.; Zou, Q.; Chen, L.; Huang, L.; Huang, F.; Ni, Y. Preparation of Lignosulfonate Ionic Hydrogels for Supercapacitors, Sensors and Dye Adsorbent Applications. Int. J. Biol. Macromol. 2021, 187, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, Y.; Han, H.; Zheng, H.; Xu, W.; Wang, Z. Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano 2021, 15, 1785–1794. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Xinming, L.; Yingde, C.; Lloyd, A.W.; Mikhalovsky, S.V.; Sandeman, S.R.; Howel, C.A.; Liewen, L. Polymeric Hydrogels for Novel Contact Lens-Based Ophthalmic Drug Delivery Systems: A Review. Contact Lens Anterior Eye 2008, 31, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Stretton, S.; Papas, E.; Skotnitsky, C.; Sweeney, D.F. Silicone Hydrogel Contact Lenses and the Ocular Surface. Ocul. Surf. 2006, 4, 24–43. [Google Scholar] [CrossRef]
- Bodoki, A.E.; Iacob, B.-C.; Dinte, E.; Vostinaru, O.; Samoila, O.; Bodoki, E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Ocular Therapy. Polymers 2021, 13, 3649. [Google Scholar] [CrossRef]
- Luliński, P. Molecularly Imprinted Polymers Based Drug Delivery Devices: A Way to Application in Modern Pharmacotherapy. A Review. Mater. Sci. Eng. C 2017, 76, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Vashist, A.; Vashist, A.; Gupta, Y.K.; Ahmad, S. Recent Advances in Hydrogel Based Drug Delivery Systems for the Human Body. J. Mater. Chem. B 2014, 2, 147–166. [Google Scholar] [CrossRef]
- Hawkins, A.M.; Milbrandt, T.A.; Puleo, D.A.; Hilt, J.Z. Synthesis and Analysis of Degradation, Mechanical and Toxicity Properties of Poly(β-Amino Ester) Degradable Hydrogels. Acta Biomater. 2011, 7, 1956–1964. [Google Scholar] [CrossRef]
- Ramkissoon-Ganorkar, C.; Liu, F.; Baudys, M.; Kim, S.W. Effect of Molecular Weight and Polydispersity on Kinetics of Dissolution and Release from Ph/Temperature-Sensitive Polymers. J. Biomater. Sci. Polym. Ed. 1999, 10, 1149–1161. [Google Scholar] [CrossRef]
- Hiratani, H.; Fujiwara, A.; Tamiya, Y.; Mizutani, Y.; Alvarez-Lorenzo, C. Ocular Release of Timolol from Molecularly Imprinted Soft Contact Lenses. Biomaterials 2005, 26, 1293–1298. [Google Scholar] [CrossRef]
- Mosbach, K.; Ramström, O. The Emerging Technique of Molecular Imprinting and Its Future Impact on Biotechnology. Bio/Technology 1996, 14, 163–170. [Google Scholar] [CrossRef]
- Fischer, L.; Mueller, R.; Ekberg, B.; Mosbach, K. Direct Enantioseparation of.Beta.-Adrenergic Blockers Using a Chiral Stationary Phase Prepared by Molecular Imprinting. J. Am. Chem. Soc. 1991, 113, 9358–9360. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, Q.; Zhou, D.; Wang, Z.; Tao, T.; Zuo, Y. Photodegradation Kinetics, Products and Mechanism of Timolol under Simulated Sunlight. J. Hazard. Mater. 2013, 252–253, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Holdsworth, C.; Ye, L. Synthesis of Molecularly Imprinted Polymers Using a Functionalized Initiator for Chiral-Selective Recognition of Propranolol. Chirality 2020, 32, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Lorenzo, C.; Hiratani, H.; Gómez-Amoza, J.L.; Martínez-Pacheco, R.; Souto, C.; Concheiro, A. Soft Contact Lenses Capable of Sustained Delivery of Timolol. J. Pharm. Sci. 2002, 91, 2182–2192. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Bae, Y.H.; Okano, T. Hydrogels: Swelling, Drug Loading, and Release. Pharm. Res. 1992, 9, 283–290. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Nair, A.S.; Parvathy, J. Extended Wear Therapeutic Contact Lens Fabricated from Timolol Imprinted Carboxymethyl Chitosan-g-Hydroxy Ethyl Methacrylate-g-Poly Acrylamide as a Onetime Medication for Glaucoma. Eur. J. Pharm. Biopharm. 2016, 109, 61–71. [Google Scholar] [CrossRef]
- Hiratani, H.; Alvarez-Lorenzo, C. Timolol Uptake and Release by Imprinted Soft Contact Lenses Made of N,N-Diethylacrylamide and Methacrylic Acid. J. Control Release 2002, 83, 223–230. [Google Scholar] [CrossRef]
- Dramou, P.; Tarannum, N. 3—Molecularly Imprinted Catalysts: Synthesis and Applications. In Molecularly Imprinted Catalysts; Li, S., Cao, S., Piletsky, S.A., Turner, A.P.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–53. [Google Scholar] [CrossRef]
- Say, R.; Keçili, R.; Denizli, A.; Ersöz, A. 6—Biomimetic Imprinted Polymers: Theory, Design Methods, and Catalytic Applications. In Molecularly Imprinted Catalysts; Li, S., Cao, S., Piletsky, S.A., Turner, A.P.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 103–120. [Google Scholar] [CrossRef]
- Jung, H.J.; Chauhan, A. Temperature Sensitive Contact Lenses for Triggered Ophthalmic Drug Delivery. Biomaterials 2012, 33, 2289–2300. [Google Scholar] [CrossRef]
- Apostolovic, B.; Deacon, S.P.E.; Duncan, R.; Klok, H.-A. Cell Uptake and Trafficking Behavior of Non-Covalent, Coiled-Coil Based Polymer-Drug Conjugates. Macromol. Rapid Commun. 2011, 32, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Cope, J.; Collier, S.; Rao, M.; Chalmers, R.; Mitchell, G.; Richdale, K.; Wagner, H.; Kinoshita, B.; Lam, D.; Faao, L.; et al. Contact Lens Wearer Demographics and Risk Behaviors for Contact Lens-Related Eye Infections—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 865–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Composition | TEGDMA xi | TEGDMA xi% |
---|---|---|
R1 | 0.011 | 1.11 |
R2 | 0.014 | 1.43 |
R3 | 0.016 | 1.64 |
R4 | 0.019 | 1.91 |
R5 | 0.022 | 2.17 |
R6 | 0.024 | 2.44 |
R7 | 0.027 | 2.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortensen, N.; Toews, P.; Bates, J. Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers 2022, 14, 248. https://doi.org/10.3390/polym14020248
Mortensen N, Toews P, Bates J. Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers. 2022; 14(2):248. https://doi.org/10.3390/polym14020248
Chicago/Turabian StyleMortensen, Nicole, Parker Toews, and Jeffrey Bates. 2022. "Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery" Polymers 14, no. 2: 248. https://doi.org/10.3390/polym14020248
APA StyleMortensen, N., Toews, P., & Bates, J. (2022). Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers, 14(2), 248. https://doi.org/10.3390/polym14020248