A Review of Composite Phase Change Materials Based on Biomass Materials
Abstract
1. Introduction
2. Phase Change Materials (PCMs)
2.1. Polyethylene Glycols (PEG)
2.2. Paraffins
2.3. Fatty Acids
3. Preparation Methods of Biomass-Based Composite PCMs
3.1. Porous Adsorption
3.2. Microencapsulated Phase Change Materials (MEPCMs)
3.3. Grafting by Copolymerization
4. Multifunctional Biomass-Based Composite PCMs
4.1. Composite PCMs with Photothermal Conversion Ability
4.2. Thermochromic Composite PCMs
4.3. Other Multifunctional Biomass-Based Composite PCMs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Wang, X.; Wu, D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustain. Energy Fuels 2019, 3, 1091–1149. [Google Scholar] [CrossRef]
- Muzhanje, A.T.; Hassan, M.A.; Ookawara, S.; Hassan, H. An overview of the preparation and characteristics of phase change materials with nanomaterials. Energy Storage 2022, 51, 104353. [Google Scholar] [CrossRef]
- Yang, T.; King, W.P.; Miljkovic, N. Phase change material-based thermal energy storage. Cell Rep. Phys. Sci. 2021, 2, 100540. [Google Scholar] [CrossRef]
- Shamseddine, I.; Pennec, F.; Biwole, P.; Fardoun, F. Supercooling of phase change materials: A review. Renew. Sustain. Energy Rev. 2022, 158, 112172. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. 2020, 5, 100039. [Google Scholar] [CrossRef]
- Gogoi, P.; Li, Z.; Guo, Z.; Khuje, S.; Ren, S. Ductile cooling phase change material. Nanoscale Adv. 2020, 2, 3900–3905. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Lin, N.; Xie, B.; Zhang, D.; Chen, J. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage. Mater. Today Energy 2021, 22, 100866. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, Z.; Gao, Y.; Liu, P.; Liu, C.; Chen, X. Flexible engineering of advanced phase change materials. Iscience 2022, 25, 104226. [Google Scholar] [CrossRef]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef]
- Amar, M.; Khudhair; Mohammed, M.; Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 2004, 45, 263–275. [Google Scholar]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Zalba, B.; Marın, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—A review. Appl. Energy 2019, 235, 846–873. [Google Scholar] [CrossRef]
- Kahwaji, S.; Johnson, M.B.; Kheirabadi, A.C.; Groulx, D.; White, A.C. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy 2018, 162, 1169–1182. [Google Scholar] [CrossRef]
- Matveeva, V.G.; Bronstein, L.M. From Renewable Biomass to Nanomaterials: Does Biomass Origin Matter? Prog. Mater. Sci. 2022, 130, 100999. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, T.; Liu, Y.; Nai, J.; Wang, Y.; Zhang, W.; Tao, X. A review of biomass materials for advanced lithium–sulfur batteries. Chem. Sci. 2019, 10, 7484–7495. [Google Scholar] [CrossRef]
- Hajiali, F.; Jin, T.; Yang, G.; Santos, M.; Lam, E.; Moores, A. Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem 2022, 15, e202102535. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Ikubanni, P.P.; Orhadahwe, T.A.; Christopher, C.T.; Akano, J.M.; Agboola, O.O.; Adegoke, S.O.; Balogun, A.O.; Ibikunle, R.A. Sustainability of multifaceted usage of biomass: A review. Heliyon 2021, 7, e08025. [Google Scholar] [CrossRef]
- Song, H.; Li, P.; Shen, W. Preparation and applications of biomass porous carbon. Sci. Adv. Mater. 2015, 7, 2257–2271. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Zhou, W.; Liu, F.; Li, K. Synthesis and thermal properties of a capric acid-modified expanded vermiculite phase change material. J. Mater. Sci. 2019, 54, 2231–2240. [Google Scholar] [CrossRef]
- Liu, X.; Su, H.; Huang, Z.; Lin, P.; Yin, T.; Sheng, X.; Chen, Y. Biomass-based phase change material gels demonstrating solar-thermal conversion and thermal energy storage for thermoelectric power generation and personal thermal management. Sol. Energy 2022, 239, 307–318. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, N.; Pan, X.; Zhong, W.; Qiu, B.; Cai, Y.; Yuan, Y. Thermal properties of biomass-based form-stable phase change material for latent heat thermal energy storage. Int. J. Energy Res. 2021, 45, 20372–20383. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, D.; Ji, S. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy 2019, 172, 599–617. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Du, Y.; Lu, X.; Qu, J. Shape-stable composite phase change materials encapsulated by bio-based balsa wood for thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 230, 111187. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Olayiwola, S.; Lau, C.; Fan, M.; Ng, K.; Tan, G. Biomass-derived porous carbons support in phase change materials for building energy efficiency: A review. Mater. Today Energy 2022, 23, 100905. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, S.; Li, X.; Hu, X.; Wu, H.; Lu, X.; Qu, J. Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability. Sol. Energy Mater. Sol. Cells 2022, 237, 111559. [Google Scholar] [CrossRef]
- Umair, M.M.; Zhang, Y.; Tehrim, A.; Zhang, S.; Tang, B. Form-stable phase-change composites supported by a biomass-derived carbon scaffold with multiple energy conversion abilities. Ind. Eng. Chem. Res. 2020, 59, 1393–1401. [Google Scholar] [CrossRef]
- Chen, C.; Liu, W.; Wang, H.; Peng, K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl. Energy 2015, 152, 198–206. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Liu, H.; Meng, F.; Ma, H.; Zheng, W. Preparation and characterization of melamine/formaldehyde/polyethylene glycol crosslinking copolymers as solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 2014, 127, 92–97. [Google Scholar]
- Frigione, M.; Lettieri, M.; Sarcinella, A.; Aguiarc, J.B. Sustainable polymer-based phase change materials for energy efficiency in buildings and their application in aerial lime mortars. Constr. Build. Mater. 2020, 231, 117149. [Google Scholar] [CrossRef]
- Zhu, S.; Ji, T.; Yang, B.; Yang, Z. Preparation and characterization of PEG/surface-modified layered double hydroxides as a new shape-stabilized phase change material. RSC Adv. 2019, 9, 23435–23443. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Li, H.; Zhang, J.; Hu, D.; Cai, Z.; Yin, X.; Dong, L.; Huang, L.; Xiong, C.; Jiang, M. Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv. Compos. Hybrid Mater. 2019, 2, 471–480. [Google Scholar] [CrossRef]
- Li, B.; Shu, D.; Wang, R.; Zhai, L.; Chai, Y.; Lan, Y.; Cao, H.; Zou, C. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage. Renew. Energy 2020, 145, 84–92. [Google Scholar] [CrossRef]
- Chen, K.; Wang, C.; Wang, T.; Zhu, Z.; Ma, R.; Jiang, H. Preparation and performances of form-stable polyethylene glycol/methylcellulose composite phase change materials. J. Polym. Res. 2020, 27, 199. [Google Scholar] [CrossRef]
- Liang, B.; Lu, X.; Li, R.; Tu, W.; Yang, Z.; Yuan, T. Solvent-free preparation of bio-based polyethylene glycol/wood flour composites as novel shape-stabilized phase change materials for solar thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 200, 110037. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Differential scanning calorimetry study of blends of poly (ethylene glycol) with selected fatty acids. Macromol. Mater. Eng. 2003, 288, 259–264. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Seo, J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol-based composite phase change materials. Int. J. Heat Mass Transf. 2019, 132, 154–161. [Google Scholar] [CrossRef]
- Jiang, L.; Lei, Y.; Liu, Q.; Wang, Y.; Zhao, Y.; Lei, J. Facile preparation of polyethylene glycol/wood-flour composites as form-stable phase change materials for thermal energy storage. J. Therm. Anal. 2020, 139, 137–146. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Liu, D.; Cheng, X.; He, X.; Wu, Y.; Li, X.; Huang, Q. Fabrication and properties of polyethylene glycol-modified wood composite for energy storage and conversion. BioResources 2016, 11, 7790–7802. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, X.; Xiao, S.; Luo, W.; Wang, H.; Jiang, X. Enhanced thermal performance of phase-change material supported by nano-Ag coated eggplant-based biological porous carbon. J. Energy Storage 2021, 43, 103174. [Google Scholar] [CrossRef]
- Wu, B.; Lyu, S.; Han, H.; Li, T.; Sun, H.; Wang, J.; Li, D.; Lei, F.; Huang, J.; Sun, D. Biomass-based shape-stabilized phase change materials from artificially cultured ship-shaped diatom frustules with high enthalpy for thermal energy storage. Compos. Part B Eng. 2021, 205, 108500. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; Rodriguez, J.F.; Romero, A.; Borreguero, A.M.; Carmona, M.; Sanchez, P. Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chem. Eng. J. 2010, 157, 216–222. [Google Scholar] [CrossRef]
- Dong, B.; Li, S.; Zhang, X.; Wang, J.; Peng, H. Synthesis and characterization of nanoalumina and CNTs-reinforced microcapsules with n-dodecane as a phase change material for cold energy storage. Energy Fuels 2020, 34, 7700–7708. [Google Scholar] [CrossRef]
- Fang, Y.; Zou, T.; Liang, X.; Wang, S.; Liu, X.; Gao, X.; Zhang, Z. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage. ACS Sustain. Chem. Eng. 2017, 5, 3074–3080. [Google Scholar] [CrossRef]
- Mert, H.H. PolyHIPE composite based-form stable phase change material for thermal energy storage. Int. J. Energy Res. 2020, 44, 6583–6594. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Wu, D. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl. Energy 2014, 114, 632–643. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, X.; Wu, D. Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials. Appl. Energy 2014, 134, 456–468. [Google Scholar] [CrossRef]
- Liu, H.; Han, Z.; Wang, Q.; Wang, X.; Wu, D.; Wang, X. Surface construction of Ni(OH)2 nanoflowers on phase-change microcapsules for enhancement of heat transfer and thermal response. Appl. Surf. Sci. 2021, 562, 150211. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, F.; Li, C.; Cai, J. Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage. J. Energy Storage 2022, 46, 103929. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, C.; Jin, T.; Dong, H. Water evaporation inspired biomass-based PCM from daisy stem and paraffin for building temperature regulation. Renew. Energy 2022, 194, 211–219. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.; Jia, M.; Yang, Y. Bio-based dual-functionalized phase change composite: Ultrafast solar-to-thermal conversion and reinforced heat storage capacity. Energy Fuels 2021, 35, 16162–16173. [Google Scholar] [CrossRef]
- Gasia, J.; Martin, M.; Sole, A.; Barreneche, C.; Cabeza, L.F. Phase change material selection for thermal processes working under partial load operating conditions in the temperature range between 120 and 200 °C. Appl. Sci. 2017, 7, 722. [Google Scholar] [CrossRef]
- Zhou, B.; Zhen, L.; Yang, Y.; Ma, W.; Fu, Y.; Duan, X.; Wang, H. Novel composite phase change material of high heat storage and photothermal conversion ability. J. Energy Storage 2022, 49, 104101. [Google Scholar] [CrossRef]
- Wen, R.; Liu, Y.; Yang, C.; Zhu, X.; Huang, Z.; Zhang, X.; Gao, W. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings. J. Energy Storage 2021, 36, 102420. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, X.; Yin, Z.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Huang, Z. Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: Preparation and thermal characterization. Thermochim. Acta 2019, 674, 21–27. [Google Scholar] [CrossRef]
- Sari, A.; Hekimoglu, G.; Karabayir, Y.; Sharma, R.K.; Arslanoglu, H.; Gencel, O.; Tyagi, V.V. Capric-stearic acid mixture impregnated carbonized waste sugar beet pulp as leak-resistive composite phase change material with effective thermal conductivity and thermal energy storage performance. Energy 2022, 247, 123501. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, X.; Wu, X. Preparation of hydrophobic lauric acid/SiO2 shape-stabilized phase change materials for thermal energy storage. J. Energy Storage 2019, 21, 611–617. [Google Scholar] [CrossRef]
- Ince, S.; Seki, Y.; Ezan, M.A.; Turgut, A.; Erek, A. Thermal properties of myristic acid/graphite nanoplates composite phase change materials. Renew. Energy 2015, 75, 243–248. [Google Scholar] [CrossRef]
- Ma, L.; Guo, C.; Ou, R.; Sun, L.; Wang, Q.; Li, L. Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy Fuels 2018, 32, 5453–5461. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Chen, Z.; Liu, X. Preparation and properties of palmitic acid/SiO2 composites with flame retardant as thermal energy storage materials. Sol. Energy Mater. Sol. Cells 2011, 95, 1875–1881. [Google Scholar] [CrossRef]
- Konuklu, Y.; Ersoy, O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Appl. Therm. Eng. 2016, 107, 575–582. [Google Scholar] [CrossRef]
- Fang, G.; Li, H.; Chen, Z.; Liu, X. Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials. Energy 2010, 35, 4622–4626. [Google Scholar] [CrossRef]
- Jiao, C.; Ji, B.; Fang, D. Preparation and properties of lauric acid–stearic acid/expanded perlite composite as phase change materials for thermal energy storage. Mater. Lett. 2012, 67, 352–354. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, Y.; Liu, Y.; Luo, X.; Yuan, J. Preparation and Performance of Capric-Myristic Acid Binary Eutectic Mixtures for Latent Heat Thermal Energy Storages. J. Nanomater. 2019, 2019, 2094767. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, Y.; Liu, X.; Shi, Y.; Jiang, D. Thermal Properties and Reliabilities of Lauric Acid-Based Binary Eutectic Fatty Acid as a Phase Change Material for Building Energy Conservation. ACS Omega 2022, 7, 16097–16108. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Li, T.; Cao, X.; Yang, X. Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage. Adv. Mech. Eng. 2015, 7, 1687814015605023. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Z.; Yin, Z.; Zhang, W.; Huang, Y.; Liu, Y.; Fang, M.; Wu, X.; Min, X. Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: Preparation, characterization, and thermal conductivity enhancement. Energy Build. 2017, 154, 46–54. [Google Scholar] [CrossRef]
- Gu, X.; Liu, P.; Liu, C.; Peng, L.; He, H. A novel form-stable phase change material of palmitic acid-carbonized pepper straw for thermal energy storage. Mater. Lett. 2019, 248, 12–15. [Google Scholar] [CrossRef]
- Zhao, P.P.; Deng, C.; Zhao, Z.Y.; Lu, P.; He, S.; Wang, Y.Z. Hypophosphite tailored graphitized hierarchical porous biochar toward highly efficient solar thermal energy harvesting and stable Storage/Release. Chem. Eng. J. 2021, 420, 129942. [Google Scholar] [CrossRef]
- Wu, G.; Bing, N.; Li, Y.; Xie, H.; Yu, W. Three-dimensional directional cellulose-based carbon aerogels composite phase change materials with enhanced broadband absorption for light-thermal-electric conversion. Energy Convers. Manag. 2022, 256, 115361. [Google Scholar] [CrossRef]
- Wang, C.; Liang, W.; Yang, Y.; Liu, F.; Sun, H.; Zhu, Z.; Li, A. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage. Renew. Energy 2020, 153, 182–192. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Li, L. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Sol. Energy Mater. Sol. Cells 2019, 194, 215–221. [Google Scholar] [CrossRef]
- Phadungphatthanakoon, S.; Poompradub, S.; Wanichwecharungruang, S.P. Increasing the thermal storage capacity of a phase change material by encapsulation: Preparation and application in natural rubber. ACS Appl. Mater. Interfaces 2011, 3, 3691–3696. [Google Scholar] [CrossRef]
- Huo, X.; Li, W.; Wang, Y.; Han, N.; Wang, J.; Wang, N.; Zhang, X. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr. Polym. 2018, 200, 602–610. [Google Scholar] [CrossRef]
- Irani, F.; Ranjbar, Z.; Jannesari, A.; Moradian, S. Fabrication and characterization of microencapsulated n-heptadecane with graphene/starch composite shell for thermal energy storage. Prog. Org. Coat. 2019, 131, 203–210. [Google Scholar] [CrossRef]
- Qiu, X.; Li, W.; Song, G.; Chu, X.; Tang, G. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy 2012, 46, 188–199. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, T.D.; Feng, H.X.; Zhang, H. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renew. Energy 2011, 36, 1814–1820. [Google Scholar] [CrossRef]
- Yang, Y.; Kong, W.; Cai, X. Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy Build. 2018, 158, 37–42. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, X.; Jiang, L.; Wu, B.; Wang, J.; Lei, J. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol. Energy Mater. Sol. Cells 2016, 147, 177–184. [Google Scholar] [CrossRef]
- Peng, K.; Chen, C.; Pan, W.; Liu, W.; Wang, Z.; Zhu, L. Preparation and properties of β-cyclodextrin/4, 4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 2016, 145, 238–247. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Xu, X.; Zhang, S. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures. J. Mol. Liq. 2020, 319, 114360. [Google Scholar] [CrossRef]
- Hu, X.; Huang, H.; Hu, Y.; Lu, X.; Qin, Y. Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 219, 110790. [Google Scholar] [CrossRef]
- Chen, B.; Han, M.; Zhang, B.; Ouyang, G.; Shafei, B.; Wang, X.; Hu, S. Efficient Solar-to-Thermal Energy Conversion and Storage with High-Thermal-Conductivity and Form-Stabilized Phase Change Composite Based on Wood-Derived Scaffolds. Energies 2019, 12, 1283. [Google Scholar] [CrossRef]
- Xie, Y.; Li, W.; Huang, H.; Dong, D.; Zhang, X.; Zhang, L.; Chen, Y.; Sheng, X.; Lu, X. Bio-based radish@PDA/PEG sandwich composite with high efficiency solar thermal energy storage. ACS Sustain. Chem. Eng. 2020, 8, 8448–8457. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Yu, Q.; Cao, G.; Yang, R.; Ke, J.; Di, X.; Liu, F.; Zhang, W.; Wang, C. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl. Energy 2018, 212, 455–464. [Google Scholar] [CrossRef]
- Heng, Y.; Feng, N.; Liang, Y.; Hu, D. Lignin-retaining porous bamboo-based reversible thermochromic phase change energy storage composite material. Int. J. Energy Res. 2020, 44, 5441–5454. [Google Scholar] [CrossRef]
- Feng, N.; Liang, Y.; Hu, D. Delignified bamboo as skeleton matrix for shape-stable phase change heat storage material with excellent reversible thermochromic response property. J. Energy Storage 2020, 30, 101401. [Google Scholar] [CrossRef]
- Song, S.; Ai, H.; Zhu, W.; Lv, L.; Feng, R.; Dong, L. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance. Compos. Part B Eng. 2021, 226, 109330. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Wang, X.; Chao, W.; Wang, N.; Ding, X.; Liu, F.; Yu, Q.; Yang, T.; Yang, Z.; et al. Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage. Appl. Energy 2020, 261, 114481. [Google Scholar] [CrossRef]
Polyethylene Glycols (PEG) | Melting Process | Freezing Process | Reference | ||
---|---|---|---|---|---|
Tm (°C) | ΔHm (J/g) | Tf (°C) | ΔHf (J/g) | ||
PEG-1000 | 42.8 | 129.3 | 23.6 | 129.8 | [32] |
PEG-2000 | 51.0 | 185.4 | 34.52 | 184.8 | [33] |
PEG-4000 | 60.5 | 172.4 | 41.96 | 207.0 | [34] |
PEG-6000 | 61.7 | 178.6 | 35.3 | 169.9 | [35] |
PEG-8000 | 64.6 | 180.0 | 44.3 | 167.9 | [36] |
PEG-10000 | 63.7 | 189.2 | 39.1 | 167.3 | [37] |
PEG-20000 | 67.7 | 160.2 | 42.9 | 155.7 | [38] |
PEG-35000 | 64.4 | 174.0 | 48.9 | 173.9 | [39] |
Paraffins | Melting Process | Freezing Process | Reference | ||
---|---|---|---|---|---|
Tm (°C) | ΔHm (J/g) | Tf (°C) | ΔHf (J/g) | ||
n-Dodecane (C12) | −6.1 | 219.0 | −16.5 | 218.8 | [45] |
n-Tetradecane (C14) | 5.88 | 225.8 | 2.15 | 225.4 | [46] |
n-Hexadecane (C16) | 20.84 | 254.7 | 16.78 | 250.6 | [47] |
n-Octadecane (C18) | 28.74 | 209.1 | 21.16 | 209.8 | [48] |
n-Eicosane (C20) | 39.17 | 237.1 | 32.93 | 239.7 | [49] |
n-Docosane (C22) | 42–46 | 234.4 | 36–39 | 233.6 | [50] |
Fatty Acids | Attribute | Proportion | Tm (°C) | ΔHm (J/g) | Reference |
---|---|---|---|---|---|
Lauric acid (LA) | Single | - | 44.2 | 165.8 | [59] |
Myristic acid (MA) | Single | - | 54.6 | 181.0 | [60] |
LA-MA | Binary | 67.66:32.34 | 34.6 | 163.0 | [61] |
Palmitic acid (PA) | Single | - | 62.8 | 207.0 | [62] |
Capric acid (CA) | Single | - | 30.15 | 164.6 | [63] |
Stearic acid (SA) | Single | - | 53.32 | 182.39 | [64] |
LA-SA | Binary | 70:30 | 29.4 | 281.8 | [65] |
CA-MA | Binary | 72:28 | 18.21 | 148.5 | [66] |
LA-PA | Binary | 79:21 | 37.15 | 183.07 | [67] |
LA-PA-SA | Ternary | 62.2:24.6:13.2 | 32.1 | 151.6 | [68] |
Phase Change Materials (PCMs) | Specific Conditions | Biomass Materials | |
---|---|---|---|
Porous adsorption | PEG, paraffins, fatty acids, etc. | High temperature carbonization | Most porous biomass materials |
MEPCMs | PEG, paraffins, fatty acids, etc. | - | Starch, chitosan, cellulose, etc. |
Grafting by copolymerization | PEG and others | - | Polysaccharide biomass materials |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Liu, J.; Zhang, J.; Lin, L.; Shi, J. A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers 2022, 14, 4089. https://doi.org/10.3390/polym14194089
Zhang Q, Liu J, Zhang J, Lin L, Shi J. A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers. 2022; 14(19):4089. https://doi.org/10.3390/polym14194089
Chicago/Turabian StyleZhang, Qiang, Jing Liu, Jian Zhang, Lin Lin, and Junyou Shi. 2022. "A Review of Composite Phase Change Materials Based on Biomass Materials" Polymers 14, no. 19: 4089. https://doi.org/10.3390/polym14194089
APA StyleZhang, Q., Liu, J., Zhang, J., Lin, L., & Shi, J. (2022). A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers, 14(19), 4089. https://doi.org/10.3390/polym14194089