Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers
Abstract
:1. Introduction
2. Experimental
Materials
3. Methods
3.1. Microscopy
3.2. NMR Spectroscopy
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, M.A. Directed self-assembly of block copolymers for nanocircuitry fabrication. Microelectr. Eng. 2015, 132, 207–217. [Google Scholar] [CrossRef]
- Lo, T.-Y.; Krishnan, M.R.; Lu, K.-Y.; Ho, R.M. Silicon-containing block copolymers for lithographic applications. Prog. Polym. Sci. 2018, 77, 19–68. [Google Scholar] [CrossRef]
- Ji, S.; Wan, L.; Liu, C.C.; Nealey, P.F. Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication. Prog. Polym. Sci. 2016, 54–55, 76–127. [Google Scholar] [CrossRef]
- Xi, S.; Wang, L.; Liu, J.; Chapman, W. Thermodynamics, Microstructures, and Solubilization of Block Copolymer Micelles by Density Functional Theory. Langmuir 2019, 35, 5081–5092. [Google Scholar] [CrossRef] [PubMed]
- Stoykovich, M.P.; Kang, H.; Daoulas, K.C.; Liu, G.; Liu, C.-C.; de Pablo, J.J.; Müller, M.; Nealey, P.F. Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries. ACS Nano 2007, 1, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.-J.; Moon, H.-S.; Kim, B.-H.; Kim, J.-Y.; Yu, J.; Lee, S.; Lee, M.G.; Choi, H.Y.; Kim, S.O. Ultralarge-Area Block Copolymer Lithography Enabled by Disposable Photoresist Prepatterning. ACS Nano 2010, 4, 5181–5186. [Google Scholar] [CrossRef]
- Hofman, A.H.; ten Brinke, G.; Loos, K. Hierarchical structure formation in supramolecular comb-shaped block copolymers. Polymer 2016, 107, 343–356. [Google Scholar] [CrossRef]
- Seo, Y.; Park, S.Y.; Lee, J.; Kim, J.K.; Duan, C.; Li, W. Inverted Cylindrical Microdomains by Blending Star-Shaped and Linear Block Copolymers. Macromolecules 2021, 54, 629–636. [Google Scholar] [CrossRef]
- Cushen, J.D.; Otsuka, I.; Bates, C.M.; Halila, S.; Fort, S.; Rochas, C.; Easley, J.A.; Rausch, E.L.; Thio, A.; Borsali, R.; et al. Oligosaccharide/Silicon-Containing Block Copolymers with 5 nm Features for Lithographic Applications. ACS Nano 2012, 6, 3424–3433. [Google Scholar] [CrossRef]
- Ostanin, S.A.; Kalinin, A.V.; Bratsyhin, Y.Y.; Saprykina, N.N.; Zuev, V.V. Linear/Ladder-Like Polysiloxane Block Copolymers with Methyl-, Trifluoropropyl- and Phenyl-Siloxane Units for Surface Modification. Polymers 2021, 13, 2063. [Google Scholar] [CrossRef]
- Mokeev, M.V.; Zuev, V.V. Rigid phase domain sizes determination for poly(urethane-urea)s by solid-state NMR spectroscopy. Correlation with mechanical properties. Eur. Polym. J. 2015, 71, 372–379. [Google Scholar] [CrossRef]
- Mellinger, F.; Wilhelm, M.; Spiess, H.W. Calibration of 1H NMR Spin Diffusion Coefficients for Mobile Polymers through Transverse Relaxation Measurements. Macromolecules 1999, 32, 4686–4691. [Google Scholar] [CrossRef]
- Steube, M.; Johann, T.; Barent, R.D.; Müller, A.H.E.; Frey, H. Rational Design of Tapered Multiblock Copolymers for Thermoplastic Elastomers. Prog. Polym. Sci. 2022, 124, 101488. [Google Scholar] [CrossRef]
- Mokeev, M.V.; Ostanin, S.A.; Saprykina, N.N.; Zuev, V.V. Microphase structure of polyurethane-polyurea copolymers as revealed by solid-state NMR: Effect of molecular architecture. Polymer 2018, 150, 72–83. [Google Scholar] [CrossRef]
- Mauri, M.; Thomann, M.Y.; Schneider, H.; Saalwachter, K. Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nucl. Magn. Reson. 2008, 4, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Clauss, J.; Schmidt-Rohr, K.; Spiess, H.W. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polymerica 1993, 44, 1–17. [Google Scholar] [CrossRef]
- Ostanin, S.A.; Mokeev, M.V.; Pikhurov, D.V.; Sakhatskii, A.S.; Zuev, V.V. Interplay of structural factors in formation of microphase-separated or microphase- mixed structures of polyurethanes revealed by solid-state NMR and dielectric spectroscopy. Polymers 2021, 13, 1967. [Google Scholar] [CrossRef]
- Paik, Y.; Chae, S.A.; Han, O.H.; Hwang, S.Y.; Ha, H.Y. Influence of water and degree of sulfonation on the structure and dynamics of SPEEK studied by solid-state 13C and 1H NMR. Polymer 2009, 50, 2664–2673. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Park, B.-D. Two-Dimensional Nuclear Magnetic Resonance Analysis of Hydrogen-Bond Formation in Thermosetting Crystalline Urea–Formaldehyde Resins at a Low Molar Ratio. ACS Appl. Polym. Mater. 2022, 4, 1084–1094. [Google Scholar] [CrossRef]
- Ten Brinke, G. Large-Scale Supramolecular Structure of Semicrystalline Polymers. Polym. Sci. A Compr. Ref. 2012, 1, 287–313. [Google Scholar]
- Hamley, I.W. Ordering in thin films of block copolymers: Fundamentals to potential applications. Prog. Polym. Sci. 2009, 34, 1161–1210. [Google Scholar] [CrossRef]
- Shu, J.; Li, P.; Chen, Q.; Zhang, S. Quantitative measurement of polymer compositions by NMR spectroscopy: Targeting polymers with marked difference in phase mobility. Macromolecules 2010, 43, 8993–8999. [Google Scholar] [CrossRef]
- Voda, A.; Beck, K.; Schauber, T.; Adler, M.; Dabisch, T.; Bescher, M.; Viol, M.; Demco, D.; Blumich, B. Investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience. Polym. Test. 2006, 25, 203–213. [Google Scholar] [CrossRef]
- Li, X.J.; Fu, W.G.; Wang, Y.N.; Chen, T.H.; Liu, X.H.; Lin, H.; Sun, P.; Jin, Q.; Ding, D. Solid-State NMR characterization of unsaturated polyester thermoset blends. Polymer 2008, 49, 2886–2897. [Google Scholar] [CrossRef]
Sample | , ms1/2 | DA, nm2/ms | DB, nm2/ms | ddis, nm | L, nm |
---|---|---|---|---|---|
I | 9.53 | 0.050 | 0.010 | 2.2 | 3.5 |
II (from ethyl acetate) | 10.18 | 0.063 | 0.011 | 2.4 | 3.9 |
II (from toluene) | 9.72 | 0.063 | 0.011 | 2.4 | 3.8 |
Sample | T2, ms | Intensity, % | ||||
---|---|---|---|---|---|---|
T21 | T22 | T23 | A1 | A2 | A3 | |
I | 0.045 ± 0.001 | 2.02 ± 0.11 | 19 ± 3 | 25 ± 1 | 67 ± 2 | 8 ± 1 |
II (from ethyl acetate) | 0.034 ± 0.002 | 2.27 ± 0.12 | 18 ± 6 | 22 ± 1 | 69 ± 2 | 9 ± 1 |
II (from toluene) | 0.035 ± 0.002 | 2.18 ± 0.12 | 16 ± 5 | 22 ± 1 | 68 ± 2 | 10 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostanin, S.A.; Mokeev, M.V.; Zuev, V.V. Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers 2022, 14, 4048. https://doi.org/10.3390/polym14194048
Ostanin SA, Mokeev MV, Zuev VV. Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers. 2022; 14(19):4048. https://doi.org/10.3390/polym14194048
Chicago/Turabian StyleOstanin, Stepan A., Maxim V. Mokeev, and Vjacheslav V. Zuev. 2022. "Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers" Polymers 14, no. 19: 4048. https://doi.org/10.3390/polym14194048
APA StyleOstanin, S. A., Mokeev, M. V., & Zuev, V. V. (2022). Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers, 14(19), 4048. https://doi.org/10.3390/polym14194048