One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of PLA Block Copolymers and Copolymer/Clay Composites
2.3. Characterizations and Testing
3. Results and Discussion
3.1. PLA-Based Block Copolymers: Structure and Properties
3.2. Nanocomposites of PLA Block Copolymer and Clay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bioplastics Market Data. Available online: https://www.european-bioplastics.org/market/ (accessed on 25 August 2022).
- Ho, K.-L.G.; Pometto, A.L.; Hinz, P.N.; Gadea-Rivas, A.; Briceño, J.A.; Rojas, A. Field Exposure Study of Polylactic Acid (PLA) Plastic Films in the Banana Fields of Costa Rica. J. Environ. Polym. Degrad. 1999, 7, 167–172. [Google Scholar] [CrossRef]
- Rudnik, E.; Briassoulis, D. Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind. Crops Prod. 2011, 33, 648–658. [Google Scholar] [CrossRef]
- Kale, G.; Auras, R.; Singh, S.P.; Narayan, R. Biodegradability of polylactide bottles in real and simulated composting conditions. Polym. Test. 2007, 26, 1049–1061. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, L.S.; Pratt, S.; Lant, P.A.; Laycock, B. The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation. In Plastics to Energy; Al-Salem, S.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 469–505. [Google Scholar]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Lorenzo, V.; Acosta, J.; de la Orden, M.U.; Martínez Urreaga, J. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). J. Environ. Manag. 2018, 216, 25–31. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Richert, J.; Rytlewski, P.; Moraczewski, K.; Stepczyńska, M.; Karasiewicz, T. Characterisation of multi-extruded poly(lactic acid). Polym. Test. 2009, 28, 412–418. [Google Scholar] [CrossRef]
- Pillin, I.; Montrelay, N.; Bourmaud, A.; Grohens, Y. Effect of thermo mechanical cycles on the physico-chemical properties of PLA. Polym. Degrad. Stab. 2008, 93, 321–328. [Google Scholar] [CrossRef]
- Zhao, P.; Rao, C.; Gu, F.; Sharmin, N.; Fu, J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018, 197, 1046–1055. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102. [Google Scholar] [CrossRef]
- Jaszkiewicz, A.; Bledzki, A.K.; Duda, A.; Galeski, A.; Franciszczak, P. Investigation of Processability of Chain-Extended Polylactides During Melt Processing—Compounding Conditions and Polymer Molecular Structure. Macromol. Mater. Eng. 2014, 299, 307–318. [Google Scholar] [CrossRef]
- Sirisinha, K.; Samana, K. Improvement of melt stability and degradation efficiency of poly (lactic acid) by using phosphite. J. Appl. Polym. Sci. 2021, 138, 49951. [Google Scholar] [CrossRef]
- Luo, J.; Meng, X.; Gong, W.; Jiang, Z.; Xin, Z. Improving the stability and ductility of polylactic acid via phosphite functional polysilsesquioxane. RSC Adv. 2019, 9, 25151–25157. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Scaffaro, R.; Sutera, F.; Mistretta, M.C. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites. Polymers 2018, 10, 18. [Google Scholar] [CrossRef]
- Meng, Q.; Heuzey, M.-C.; Carreau, P.J. Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polym. Degrad. Stab. 2012, 97, 2010–2020. [Google Scholar] [CrossRef]
- Araújo, A.; Botelho, G.; Oliveira, M.; Machado, A.V. Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl. Clay Sci. 2014, 88–89, 144–150. [Google Scholar] [CrossRef]
- Fukushima, K.; Tabuani, D.; Arena, M.; Gennari, M.; Camino, G. Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React. Funct. Polym. 2013, 73, 540–549. [Google Scholar] [CrossRef]
- Oh, J.K. Polylactide (PLA)-based amphiphilic block copolymers: Synthesis, self-assembly, and biomedical applications. Soft Matter 2011, 7, 5096–5108. [Google Scholar] [CrossRef]
- Stefaniak, K.; Masek, A. Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials 2021, 14, 5254. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Wang, H.; Jin, W.; Li, J. Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone. Mater. Sci. Eng. C 2009, 29, 889–893. [Google Scholar] [CrossRef]
- Buwalda, S.J.; Dijkstra, P.J.; Feijen, J. Poly(ethylene glycol)–poly(L-lactide) star block copolymer hydrogels crosslinked by metal–ligand coordination. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1783–1791. [Google Scholar] [CrossRef]
- Koosomsuan, W.; Phinyocheep, P.; Sirisinha, K. Facile melt processing technique for the preparation of super ductile PLA–PEG multiblock copolymers: The roles of catalyst and antioxidant loadings. Polym. Degrad. Stab. 2018, 157, 160–174. [Google Scholar] [CrossRef]
- Luangkachao, J.; Sirisinha, K. Role of Sn-based and Ti-based catalysts on melt copolymerization of PLA-Polyols. IOP Conf. Ser. Mater. Sci. Eng. 2020, 773, 012058. [Google Scholar] [CrossRef]
- Han, L.; Yu, C.; Zhou, J.; Shan, G.; Bao, Y.; Yun, X.; Dong, T.; Pan, P. Enantiomeric blends of high-molecular-weight poly(lactic acid)/poly(ethylene glycol) triblock copolymers: Enhanced stereocomplexation and thermomechanical properties. Polymer 2016, 103, 376–386. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, W.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PEG-PLA tri-block copolymers: Effective compatibilizers for promotion of the interfacial structure and mechanical properties of PLA/PBAT blends. Polymer 2018, 146, 179–187. [Google Scholar] [CrossRef]
- Ljungberg, N.; Wesslén, B. Tributyl citrate oligomers as plasticizers for poly (lactic acid): Thermo-mechanical film properties and aging. Polymer 2003, 44, 7679–7688. [Google Scholar] [CrossRef]
- Jia, Z.; Tan, J.; Han, C.; Yang, Y.; Dong, L. Poly(ethylene glycol-co-propylene glycol) as a macromolecular plasticizing agent for polylactide: Thermomechanical properties and aging. J. Appl. Polym. Sci. 2009, 114, 1105–1117. [Google Scholar] [CrossRef]
- Gao, F. Clay/polymer composites: The story. Mater. Today 2004, 7, 50–55. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Ray, S.S. Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Compos. Part B Eng. 2021, 215, 108845. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Gómez, M.; Palza, H.; Quijada, R. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites. Polymers 2016, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, V.; Pochan, D.J. Poly (l-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties. Chem. Mater. 2003, 15, 4317–4324. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A.; Cailloux, J.; Santana, O.; Maspoch, M.L.; Velazquez Infante, J.C. The Influence of the Clay Particles on the Mechanical Properties and Fracture Behavior of PLA/o-MMT Composite Films. Adv. Polym. Technol. 2015, 34, 21470. [Google Scholar] [CrossRef]
- Haji Abdolrsaouli, M.; Babaei, A.; Kaschta, J.; Nazockdat, H. Polylactide/organoclay nanocomposites: The effect of organoclay types on the structure development and the kinetic of cold crystallization. J. Vinyl Addit. Technol. 2019, 25, 48–58. [Google Scholar] [CrossRef]
- Maglio, G.; Migliozzi, A.; Palumbo, R. Thermal properties of di- and triblock copolymers of poly(l-lactide) with poly(oxyethylene) or poly(ε-caprolactone). Polymer 2003, 44, 369–375. [Google Scholar] [CrossRef]
- Mei, T.; Zhu, Y.; Ma, T.; He, T.; Li, L.; Wei, C.; Xu, K. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG. J. Biomed. Mater. Res. Part A 2014, 102, 3243–3254. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, W.; Yang, J.; Bei, J.; Wang, S. Biodegradable poly(l-lactide)-poly(ethylene glycol) multiblock copolymer: Synthesis and evaluation of cell affinity. Biomaterials 2003, 24, 2195–2203. [Google Scholar] [CrossRef]
- Sirisinha, K.; Somboon, W. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly(butylene adipate-co-terephthalate) and poly(lactide). J. Appl. Polym. Sci. 2012, 124, 4986–4992. [Google Scholar] [CrossRef]
- Kajornprai, T.; Suttiruengwong, S.; Sirisinha, K. Manipulating Crystallization for Simultaneous Improvement of Impact Strength and Heat Resistance of Plasticized Poly(l-lactic acid) and Poly(butylene succinate) Blends. Polymers 2021, 13, 3066. [Google Scholar] [CrossRef]
- Premphet, K.; Horanont, P. Improving performance of polypropylene through combined use of calciuum carbonate and metallocene-produced impact modifier. Polym. -Plast. Technol. Eng. 2001, 40, 235–247. [Google Scholar] [CrossRef]
- Von Burkersroda, F.; Schedl, L.; Göpferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23, 4221–4231. [Google Scholar] [CrossRef]
- Xu, G.; Chen, S.; Yan, X.; Yang, C.; Chen, Z. Synthesis and Hydrophilic Performance of Poly(Lactic Acid)-Poly(Ethylene Glycol) Block Copolymers. Am. J. Anal. Chem. 2016, 07, 299–305. [Google Scholar] [CrossRef][Green Version]
- Sheng, Y.; Yuan, Y.; Liu, C.; Tao, X.; Shan, X.; Xu, F. In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: Effect of PEG content. J. Mater. Sci. Mater. Med. 2009, 20, 1881–1891. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/montmorillonite nanocomposites: Study of the hydrolytic degradation. Polym. Degrad. Stab. 2005, 87, 535–542. [Google Scholar] [CrossRef]
Properties | PLA Virgin | PLA Regrind | PLA-PEG Copolymer | PLA-PPG Copolymer |
---|---|---|---|---|
Weight average molecular weight (Mw) | 1.7 × 105 | 1.4 × 105 | 1.3 × 105 | 1.1 × 105 |
Number average molecular weight (Mn) | 8.1 × 104 | 7.4 × 104 | 5.0 × 104 | 4.8 × 104 |
Polydispersity index (PDI) | 1.96 | 1.83 | 2.78 | 2.29 |
Soft Segment [%] | Plasticized PLA | PLA-Based Block Copolymer | ||||
---|---|---|---|---|---|---|
Strength [MPa] | Modulus [MPa] | Elongation [%] | Strength [MPa] | Modulus [MPa] | Elongation [%] | |
PLA | 64.73 ± 3.50 | 2269.03 ± 119.48 | 5.69 ± 1.12 | |||
PPG | ||||||
10 | 40.74 ± 0.98 | 1971.66 ± 143.00 | 25.48 ± 60.40 | 45.40 ± 1.21 | 1811.50 ± 71.65 | 5.60 ± 0.16 |
15 | 34.83 ± 1.83 | 1893.64 ± 123.18 | 49.90 ± 16.01 | 33.89 ± 1.16 | 1613.92 ± 46.55 | 36.27 ± 3.67 |
20 | 32.31 ± 1.09 | 1804.29 ± 102.49 | 53.66 ± 10.34 | 25.23 ± 0.51 | 1418.90 ± 41.20 | 14.04 ± 4.24 |
PEG | ||||||
10 | 52.88 ± 0.57 | 1657.66 ± 34.34 | 25.71 ± 0.40 | 30.25 ± 1.98 | 952.31 ± 53.59 | 606.31 ± 27.71 |
15 | 41.37 ± 2.05 | 1095.88 ± 40.30 | 528.17 ± 17.82 | 26.90 ± 1.49 | 546.33 ± 32.25 | 644.52 ± 31.28 |
20 | 35.23 ± 1.61 | 549.12 ± 10.19 | 478.51 ± 20.81 | 24.92 ± 0.71 | 523.95 ± 19.94 | 620.14 ± 17.88 |
Samples | PEG Content [%] | Strength [MPa] | Modulus [MPa] | Elongation [%] |
---|---|---|---|---|
PLA virgin | - | 64.73 ± 3.50 | 2269.03 ± 119.48 | 5.69 ± 1.12 |
Block copolymer | 20 | 24.92 ± 0.71 | 523.95 ± 19.94 | 620.14 ± 17.88 |
Copolymer composite | 20 | 36.60 ± 1.20 | 1330.02 ± 60.58 | 87.54 ± 3.28 |
Reactive copolymer composite | 20 | 42.32 ± 1.13 | 1410.45 ± 70.58 | 562.15 ± 42.39 |
PLA regrind | - | 59.30 ± 1.70 | 2242 ± 201.02 | 6.15 ± 0.92 |
Block copolymer | 20 | 27.42 ± 1.16 | 740.04 ± 31.2 | 587.20 ± 45.41 |
Copolymer composite | 20 | 34.02 ± 2.17 | 954.29 ± 53.59 | 102.50 ± 17.00 |
Reactive copolymer composite | 20 | 35.98 ± 1.47 | 969.68 ± 58.92 | 441.79 ± 20.87 |
PLA regrind | ||||
Block copolymer | 10 | 26.25 ± 1.98 | 952.31 ± 53.59 | 572.31 ± 29.17 |
Copolymer composite | 10 | 37.60 ± 0.71 | 1328.74 ± 64.67 | 35.24 ± 3.28 |
Reactive copolymer composite | 10 | 39.49 ± 1.30 | 1417.70 ± 71.16 | 506.15 ± 42.39 |
System | Type of Copolymer | Mw [kDa] | PLA/PEG Ratio [wt/wt] | Strength [MPa] | Modulus [MPa] | Elongation [%] | Ref. |
---|---|---|---|---|---|---|---|
PLA-PEG copolymer (Mw of PEG = 4000) | multiblock | 95–130 | 80/20 | 25–28 | 524–740 | 580–620 | This work |
Copolymer composite (with 3 wt% clay) | multiblock | N/A | 80/20 | 34–37 | 954–1330 | 85–102 | |
90/10 | 37.6 | 1328 | 35 | ||||
Reactive copolymer composite (with 3 wt% clay) | multiblock | N/A | 80/20 | 36–42 | 970–1410 | 500 | |
90/10 | 39.5 | 1418 | 506 | ||||
PLA-PEG copolymer synthesized from ring-opening polymerization of lactide in the presence of PEG | diblock | 32.9 | 79/21 | 7.0 | 320 | 49 | [37] |
triblock | 57.5 | 78/22 | 7.0 | 225 | 134 | ||
multiblock | 145 | 48/52 | 32.6 | 28.4 | 546 | [38] | |
multiblock | 61.1 | 52/48 | 4.6 | 25.0 | 561 | ||
triblock | 28.0 | 76/24 | 4.0 | N/A | 6.0 | [39] | |
triblock | 49.8 | 87/13 | 11.7 | N/A | 6.8 | ||
multiblock | 55.3 | 75/25 | 22.1 | N/A | 469 | ||
multiblock | 66.8 | 87/13 | 25.2 | N/A | 59 | ||
Poly(butylene adipate-co-terephthalate) (PBAT) | N/A | N/A | N/A | 18.8 | 30 | 388 | [40] |
Poly(butylene succinate) (PBS) | N/A | N/A | N/A | 33.3 | 450 | 330 | [41] |
Polypropylene (PP) | N/A | N/A | N/A | 34.4 | 1620 | >350 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirisinha, K.; Wirasate, S.; Sirisinha, C.; Wattanakrai, N. One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers 2022, 14, 3642. https://doi.org/10.3390/polym14173642
Sirisinha K, Wirasate S, Sirisinha C, Wattanakrai N. One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers. 2022; 14(17):3642. https://doi.org/10.3390/polym14173642
Chicago/Turabian StyleSirisinha, Kalyanee, Supa Wirasate, Chakrit Sirisinha, and Noppasorn Wattanakrai. 2022. "One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility" Polymers 14, no. 17: 3642. https://doi.org/10.3390/polym14173642
APA StyleSirisinha, K., Wirasate, S., Sirisinha, C., & Wattanakrai, N. (2022). One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility. Polymers, 14(17), 3642. https://doi.org/10.3390/polym14173642