Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of SiO2/SMPU Nanocomposite
2.1.1. Raw Materials
2.1.2. Synthesis of Samples
2.2. Characterization Method
2.2.1. DSC Test
2.2.2. Shape Memory Test
2.2.3. SEM Observation
2.2.4. FTIR Test
2.2.5. Dynamic Infrared Dichroism Test
3. Results and Discussion
3.1. Thermal Behaviors
3.2. Shape Memory Effect
3.3. Microstructure Changes
3.4. Interactions among Microphase Structures
3.4.1. Characteristic Functional Groups in Soft and Hard Segments
3.4.2. Hydrogen Bond Changes
3.5. Molecular Orientation Changes during a Shape Memory Cycle
4. Conclusions
- The phase separation temperature (72.9 °C) is regarded as the best shape memory switching temperature of prepared SiO2/SMPU nanocomposite, which matches the highest working temperature of expansion joints on concrete pavement in China.
- The SiO2 nano particles with an average size of about 70–180 nm could be well dispersed in SMPU matrix and the addition of SiO2 nano particles has quite small influence on the thermal behavior and microstructure of SMPU.
- The shape memory performance of SMPU is affected by SiO2 nano particles, in the one shape memory cycle, the average values of Rf and Rr of SiO2/SMPU are 98.2% and 97.3%, respectively, showing excellent shape memory effect although crystal imperfections are increased due to the addition of SiO2 nanoparticles.
- The peculiar orientation behaviors of SiO2/SMPU nanocomposite in shape memory process could be ascribed to the interactions between SiO2 nano particles and segments of SMPU. In programming process, the hard and soft segments at the surface have a perpendicular direction at the small strain, and then possess a parallel orientation at higher deformation.
- Calculation results of orientation functions suggest that the tensile programming leads to the molecular orientation in SiO2/SMPU nanocomposite, showing obvious anisotropy. The programmed specimen is not completely recovered to the original shape because partial hydrogen bonds between hard and soft segments are broken, and some crystal structures are also damaged.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.; Mo, L.; Su, D.; Woldekidan, M.; Wu, S. Investigation into fundamental properties of bituminous plug expansion joint filling mixtures containing rubber granules. Constr. Build. Mater. 2013, 47, 984–989. [Google Scholar] [CrossRef]
- Li, G.; Ji, G.; Meng, H. Shape Memory Polymer-Based Sealant for a Compression Sealed Joint. J. Mater. Civ. Eng. 2014, 27, 4014196. [Google Scholar] [CrossRef]
- Liu, S.; Mo, L.; Wang, K.; Xie, Y.; Woldekidan, M. Preparation, microstructure and rheological properties of asphalt sealants for bridge expansion joints. Constr. Build. Mater. 2016, 105, 1–13. [Google Scholar] [CrossRef]
- Li, Q.; Crowley, R.W.; Bloomquist, D.B.; Roque, R. Newly Developed Adhesive Strength Test for Measuring the Strength of Sealant between Joints of Concrete Pavement. J. Mater. Civ. Eng. 2014, 26, 4014097–4014105. [Google Scholar] [CrossRef]
- Zhou, X.X. Thermo kinetics study of degradation process of soybean-based polyurethane foams. J. Appl. Polym. Sci. 2019, 136, 14804. [Google Scholar] [CrossRef]
- Hu, J.L.; Zhang, C.L.; Ji, F.L. Revealing the morphological architecture of a shape memory polyurethane by simulation. Sci. Rep. 2016, 6, 29180. [Google Scholar] [CrossRef]
- Ban, J.; Zhu, L.; Chen, S. The effect of liquid crystal fillers on structure and properties of liquid crystalline shape memory polyurethane composites II: 4-hexadecyloxybenzoic acid. J. Mater. Sci. 2017, 52, 2628–2641. [Google Scholar] [CrossRef]
- Martins, G.S.; Pereira, I.M.; Oréfice, R.L. Toughening brittle polymers with shape memory polymers. Polymer 2018, 135, 30–38. [Google Scholar] [CrossRef]
- Ren, H.; Mei, Z.; Chen, S.; Zhuo, H.; Chen, S.; Yang, H.; Zuo, J.; Ge, Z. A new strategy for designing multifunctional shape memory polymers with amine-containing polyurethanes. J. Mater. Sci. 2016, 51, 9131–9144. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Zhu, Y.; Jiang, W.; Fu, Y. Storable silicon/shape memory polyurethane hybrid sols prepared by a facile synthesis process and their application to aramid fibers. J. Sol-Gel Sci. Technol. 2015, 74, 670–676. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, W.; Heng, K.; Chu, M.; Qian, B.; Tang, J.; Liu, Z.; Huang, F. Dual-Control Mechanism of Water and Temperature in Automatically Pro-grammable Shape Memory Polymers. Macromol. Mater. Eng. 2022, 1, 2200336. [Google Scholar] [CrossRef]
- Wongsamut, C.; Suwanpreedee, R.; Manuspiya, H. Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. Int. J. Adhes. Adhes. 2020, 102, 102677. [Google Scholar] [CrossRef]
- Gupta, P.; Garg, H.; Mohanty, J.; Kumar, B. Excellent memory performance of poly (1,6-hexanediol adipate) based shape memory polyurethane filament over a range of thermo-mechanical parameters. J. Polym. Res. 2020, 27, 382. [Google Scholar] [CrossRef]
- Turan, D.; Gunes, G.; Güner, F.S. Synthesis, Characterization and O2 Permeability of Shape Memory Polyurethane Films for Fresh Produce Packaging. Packag. Technol. Sci. 2016, 29, 415–427. [Google Scholar] [CrossRef]
- Morozov, I.A.; Kamenetskikh, A.S.; Beliaev, A.Y.; Scherban, M.G.; Kiselkov, D.M.; Lemkina, L.M. Physical-mechanical and structural properties of phase-separated rated polyurethane surface treated in argon plasma. Mater. Phys. Mech. 2021, 47, 527–542. [Google Scholar] [CrossRef]
- Gonzalez Bertran, J.; Ardanuy Raso, M.; Gonzalez Colominas, M.; Rodriguez, R.; Jovancic, P. Polyurethane shape memory filament yarns: Melt spinning, carbon-based reinforcement, and characterization. Text. Res. J. 2022, 20, 00405175221114165. [Google Scholar] [CrossRef]
- Shi, S.; Shen, D.; Xu, T. Microstructural and mechanical property evolutions of shape memory polyurethane during a thermodynamic cycle. J. Appl. Polym. Sci. 2017, 135, 45703. [Google Scholar] [CrossRef]
- Gholami, M.; Haddadi-Asl, V.; Jouibari, I.S. A review on microphase separation measurement techniques for polyurethanes. J. Plast. Film. Sheeting 2022, 11, 87560879221088939. [Google Scholar] [CrossRef]
- Shi, S.; Xu, T.; Wang, D.; Oeser, M. The Difference in Molecular Orientation and Interphase Structure of SiO2/Shape Memory Polyurethane in Original, Programmed and Recovered States during Shape Memory Process. Polymers 2020, 12, 1994. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, H.; Qiao, M.; Ding, X.; Yu, M. Growing nano-SiO2 on the surface of aramid fibers assisted by supercritical CO2 to enhance the thermal stability, interfacial shear strength, and uv resistance. Polymers 2019, 11, 1397. [Google Scholar] [CrossRef]
- Yousefi, E.; Ghadimi, M.R.; Amirpoor, S.; Dolati, A. Preparation of new superhydrophobic and highly oleophobic polyurethane coating with enhanced mechanical durability. Appl. Surf. Sci. 2018, 454, 201–209. [Google Scholar] [CrossRef]
- Huang, M.M.; Dong, X.; Gao, Y.Y. Probing the structure evolution/orientation induced by interaction between polyurethane segments and SiO2 surface in shape memory process. Polymer 2014, 55, 4289–4298. [Google Scholar] [CrossRef]
- Güler, G.; Vorob’Ev, M.M.; Vogel, V.; Mäntele, W. Proteolytically-induced changes of secondary structural protein conformation of bovine serum albumin monitored by Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 161, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Aslan, S.; Kaplan, S. Thermomechanical and Shape Memory Performances of Thermo-sensitive Polyurethane Fibers. Fibers Polym. 2018, 19, 272–280. [Google Scholar] [CrossRef]
- Luo, H.S.; Zhou, X.D.; Ma, Y.Y. Shape memory-based tunable resistivity of polymer composites. Appl. Surf. Sci. 2016, 363, 59–65. [Google Scholar] [CrossRef]
- Sui, T.; Salvati, E.; Zhang, H.; Dolbnya, I.; Korsunsky, A. Multiscale synchrotron scattering studies of the temperature-dependent changes in the structure and deformation response of a thermoplastic polyurethane elastomer. Mater. Today Adv. 2019, 4, 100024. [Google Scholar] [CrossRef]
- Cao, F.; Jana, S.C. Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 2007, 48, 3790–3800. [Google Scholar] [CrossRef]
- Armstrong, S.R.; Du, J.; Baer, E. Co- extruded multilayer shape memory materials: Nano-scale phenomena. Polymer 2014, 55, 626–631. [Google Scholar] [CrossRef]
- Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79–120. [Google Scholar] [CrossRef]
- Mondal, S. Temperature responsive shape memory polyurethanes. Polym. Technol. Mater. 2021, 60, 1491–1518. [Google Scholar] [CrossRef]
- Luo, L.; Yuan, Y.; Dai, Y.; Cheng, Z.; Wang, X.; Liu, X. The novel high performance aramid fibers containing benzimidazole moieties and chloride substitutions. Mater. Des. 2018, 158, 127–135. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Dai, Y. The introduction of asymmetric heterocyclic units into poly (p-phenylene terephthalamide) and its effect on microstructure, interactions and properties. J. Mater. Sci. 2018, 53, 13291–13303. [Google Scholar] [CrossRef]
- Mattia, J.; Painter, P. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly (ethylene glycol). Macromolecules 2007, 40, 1546–1554. [Google Scholar] [CrossRef]
- Tereshatov, V.V.; Makarova, M.; Senichev, V.Y.; Volkova, E.; Vnutskikh, Z.A.; Slobodinyuk, A.I. The role of the soft phase in the hardening effect and the rate dependence of the ultimate physico-mechanical properties of urethane-containing segmented elastomers. Colloid Polym. Sci. 2014, 293, 153–164. [Google Scholar] [CrossRef]
- Lu, X.-L.; Lü, X.-Q.; Wang, J.-Y.; Sun, Z.-J.; Tong, Y.-X. Preparation and shape memory properties of TiO2/PLCL biodegradable polymer nanocomposites. Trans. Nonferrous Met. Soc. China 2013, 23, 120–127. [Google Scholar] [CrossRef]
- Jin, J.; Ma, T.; Zhang, Y. Chemically inhomogeneous RE-Fe-B permanent magnets with high Figure of merit: Solution to global rare earth criticality. Sci. Rep. 2016, 6, 32200. [Google Scholar] [CrossRef]
- Shiryaev, A.A.; Voloshchuk, A.M.; Volkov, V.V.; Averin, A.A.; Artamonova, S.D. Nanoporous active carbons at ambient conditions: A comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption. J. Phys. Conf. Ser. 2017, 848, 12009. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Zhang, C.; Tang, B.Z.; Chen, S. Self-adaptive water vapor permeability and its hydrogen bonding switches of bio-inspired polymer thin films. Mater. Chem. Front. 2017, 1, 2027–2030. [Google Scholar] [CrossRef]
- Zhang, S.; Ran, Q.; Fu, Q.; Gu, Y. Preparation of Transparent and Flexible Shape Memory Polybenzoxazine Film through Chemical Structure Manipulation and Hydrogen Bonding Control. Macromolecules 2018, 51, 6561–6570. [Google Scholar] [CrossRef]
- Liu, W.K.; Zhao, Y.; Wang, R. Post-crosslinked polyurethanes with excellent shape memory property, Macromol. Rapid Commun. 2017, 38, 700450. [Google Scholar] [CrossRef]
- Li, W.; Jiang, X.; Wu, R.; Wang, W. Fast shape recovery by changing the grafting ratio in polyurethane/montmorillonite–poly(methyl methacrylate) composites. Polym. J. 2017, 49, 263–271. [Google Scholar] [CrossRef]
- Yu, J.; Xia, H.; Teramoto, A.; Ni, Q.-Q. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds. J. Biomed. Mater. Res. Part A 2018, 106, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, J.; Han, D.; Feng, Y.; Shen, C.; Chang, C.; Song, Z. The effect of soft segment on the microstructure and mechanical properties of waterborne UV-curable polyurethane/silica nanocomposites. J. Polym. Res. 2015, 22, 106. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, L.; Wang, L.; Dong, X.; Gao, X.; Li, C.; Wang, D. Double Crystalline Multiblock Copolymers with Controlling Microstructure for High Shape Memory Fixity and Recovery. ACS Appl. Mater. Interfaces 2017, 9, 30046–30055. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, F.; Lin, W.; Liu, W.; Li, J.; Luo, F.; Wang, Y.; Tan, H. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender. Macromol. Biosci. 2018, 18, e1800054. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Wu, R.; Wang, W. PU/PMMA composites synthesized by reaction-induced phase separation: A general approach to achieve a shape memory effect. RSC Adv. 2017, 7, 33701–33707. [Google Scholar] [CrossRef]
- Cai, C.; Wei, Z.; Wang, X.; Mei, C.; Fu, Y.; Zhong, W.H. Novel double-networked polyurethane composites with multi-stimuli responsive functionalities. J. Mater. Chem. A 2018, 6, 17457–17472. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, H.; Qiu, Y.; Xu, Z.; Ni, Q.-Q. Shape memory driving thickness-adjustable G@SMPU sponge with ultrahigh carbon loading ratio for excellent microwave shielding performance. Mater. Lett. 2018, 236, 116–119. [Google Scholar] [CrossRef]
- Gu, L.; Cui, B.; Wu, Q.-Y.; Yu, H. Bio-based polyurethanes with shape memory behavior at body temperature: Effect of different chain extenders. RSC Adv. 2016, 6, 17888–17895. [Google Scholar] [CrossRef]
- Wu, X.; Liu, L.; Fang, W.; Qiao, C.; Li, T. Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene. J. Mater. Sci. 2016, 51, 2727–2738. [Google Scholar] [CrossRef]
- Liu, J.; Ji, H. Investigation on Infrared Signature of Axisymmetric Vectoring Exhaust System with Infrared Suppressions. J. Thermophys. Heat Transf. 2018, 32, 627–636. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, T.; Qian, X.; Zhu, Y.; Liu, X. Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega 2020, 5, 22772–22777. [Google Scholar] [CrossRef] [PubMed]
- Hadi, M.M.; Nesbitt, H.; Masood, H.; Sciscione, F.; Patel, S.; Ramesh, B.S.; Emberton, M.; Callan, J.F.; MacRobert, A.; McHale, A.P.; et al. Investigating the performance of a novel pH and cathepsin B sensitive, stimulus-responsive nanoparticle for optimised sonodynamic therapy in prostate cancer. J. Control Release 2021, 329, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Fu, Y.; Ni, Q.-Q. In-situgrown silica/water-borne epoxy shape memory composite foams prepared without blowing agent addition. J. Appl. Polym. Sci. 2015, 132, 42599. [Google Scholar] [CrossRef]
Sample | l0 (mm) | l1 (mm) | l2 (mm) | l3 (mm) | Rf (%) | Rr (%) |
---|---|---|---|---|---|---|
SMPU | 44.00 | 55.00 | 55.00 | 44.00 | 100 | 100 |
44.00 | 55.02 | 55.02 | 44.00 | 100 | 100 | |
44.00 | 55.00 | 55.00 | 44.00 | 100 | 100 | |
SiO2/SMPU | 44.00 | 55.03 | 54.83 | 44.31 | 98.18 | 97.14 |
44.00 | 54.99 | 54.80 | 44.29 | 98.18 | 97.29 | |
44.00 | 54.98 | 54.76 | 44.27 | 98.09 | 97.49 |
Stretching Strains | 0% | 5% | 10% | 15% | 20% | 25% |
---|---|---|---|---|---|---|
RN-H | 0.42 | 0.42 | 0.41 | 0.39 | 0.38 | 0.38 |
RC=O | 1.12 | 1.13 | 1.16 | 1.19 | 1.23 | 1.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Ma, T.; Gu, L.; Zhang, Y. Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement. Polymers 2022, 14, 3336. https://doi.org/10.3390/polym14163336
Shi S, Ma T, Gu L, Zhang Y. Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement. Polymers. 2022; 14(16):3336. https://doi.org/10.3390/polym14163336
Chicago/Turabian StyleShi, Shuang, Tao Ma, Linhao Gu, and Yanning Zhang. 2022. "Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement" Polymers 14, no. 16: 3336. https://doi.org/10.3390/polym14163336
APA StyleShi, S., Ma, T., Gu, L., & Zhang, Y. (2022). Thermal Behaviors, Interfacial Microstructure and Molecular Orientation of Shape Memory Polyurethane/SiO2 Based Sealant for Concrete Pavement. Polymers, 14(16), 3336. https://doi.org/10.3390/polym14163336