Epoxy Coatings Containing Modified Graphene for Electromagnetic Shielding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- (a)
- Functionalization of Graphene with small molecules
- (b)
- Functionalization of Graphene with polymer chains
- (c)
- Epoxy coating formulation
2.3. Characterization Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinaldi, A.; Proietti, A.; Tamburrano, A.; Sarto, M.S. Graphene-Coated Honeycomb for Broadband Lightweight Absorbers. IEEE Trans. Electromagn. Compat. 2018, 60, 1454–1462. [Google Scholar] [CrossRef]
- Singh, S.K.; Akhtar, M.J.; Kar, K.K. Impact of Al2O3, TiO2, ZnO and BaTiO3 on the microwave absorption properties of exfoliated graphite/epoxy composites at X-band frequencies. Compos. Eng. Part B 2019, 167, 135–146. [Google Scholar] [CrossRef]
- Hisatake, S.; Nakajima, H.; Nguyen Pham, H.H.; Uchida, H.; Tojyo, M.; Oikawa, Y.; Miyaji, K.; Nagatsuma, T. Mapping of electromagnetic waves generated by free-running self-oscillating devices. Sci. Rep. 2017, 7, 9203. [Google Scholar] [CrossRef] [Green Version]
- Teoh, Y.J.; Bruka, M.A.; Idris, N.M.; Ismail, N.A.; Muztaza, N.M. Introduction of a Ground Penetrating Radar System for Subsurface Investigation in Balik Pulau, Penang Island. J. Phys. Conf. Ser. 2018, 995, 012098. [Google Scholar] [CrossRef] [Green Version]
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Munir, A. Microwave Radar Absorbing Properties of Multiwalled Carbon Nanotubes Polymer Composites: A Review. Adv. Polym. Technol. 2017, 36, 362–370. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, L.; Wu, H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Adv. Sci. 2022, 9, 2105553. [Google Scholar] [CrossRef]
- Mirsaneh, M.; Furman, E.; Ryan, J.V.; Lanagan, M.T.; Pantano, C.G. Frequency dependent electrical measurements of amorphous GeSbSe chalcogenide thin films. Appl. Phys. Lett. 2010, 96, 112907. [Google Scholar] [CrossRef]
- Wright, P.V.; Chambers, B.; Barnes, A.; Lees, K.; Despotakis, A. Progress in smart microwave materials and structures. Smart Mater. Struct. 2000, 9, 273–279. [Google Scholar] [CrossRef]
- Vendik, O.G.; Hollmann, E.K.; Kozyrev, A.B.; Prudan, A.M. Ferroelectric Tuning of Planar and Bulk Microwave Devices. J. Supercond. 1999, 12, 325–338. [Google Scholar] [CrossRef]
- Luo, J.; Zuo, Y.; Shen, P.; Yan, Z.; Zhang, K. Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline-coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. RSC Adv. 2017, 7, 36433–36443. [Google Scholar] [CrossRef] [Green Version]
- Prokopchuk, A.; Zozulia, I.; Didenko, Y.; Tatarchuk, D.; Heuer, H.; Poplavko, Y. Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings. Coatings 2021, 11, 172. [Google Scholar] [CrossRef]
- Jinxi, H.; Zhibo, F. Input impedance of a tunable rectangular microstrip antenna. Wuhan Univ. J. Nat. Sci. 1996, 1, 81–84. [Google Scholar] [CrossRef]
- Balci, O.; Polat, E.O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayalakshmi, C.G.; Inamdar, A.; Anand, A.; Kandasubramanian, B. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 2019, 136, 47241. [Google Scholar] [CrossRef] [Green Version]
- Sadiku, E.R.; Agboola, O.; Mochane, M.J.; Fasiku, V.O.; Owonubi, S.J.; Ibrahim, I.D.; Abbavaram, B.R.; Kupolati, W.K.; Jayaramudu, T.; Uwa, C.A. The use of polymer nanocomposites in the aerospace and the military/defence industries. In Research Anthology on Military and Defense Applications, Utilization, Education, and Ethics; IGI Global: Hershey, PA, USA, 2021; pp. 323–356. [Google Scholar]
- Kumar, S.; Krishnan, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Polymer Nanocomposites Coating for Anticorrosion Application. In Polymer Nanocomposites for Advanced Engineering and Military Applications; IGI Global: Hershey, PA, USA, 2019; pp. 254–294. [Google Scholar]
- Stergiou, C.A.; Koledintseva, M.Y.; Rozanov, K.N. 3-Hybrid polymer composites for electromagnetic absorption in electronic industry. In Hybrid Polymer Composite Materials; Thakur, V.K., Thakur, M.K., Pappu, A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 53–106. [Google Scholar]
- Zhang, K.-L.; Zhang, J.-Y.; Hou, Z.-L.; Bi, S.; Zhao, Q.-L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617. [Google Scholar] [CrossRef]
- Balaji Ananth, P.; Abhiram, N.; Hari Krishna, K.; Nisha, M.S. Synthesis of radar absorption material for stealth application. Mater. Today Proc. 2021, 47, 4872–4878. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, J. A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites. Nano-Micro Lett. 2022, 14, 89. [Google Scholar] [CrossRef]
- Chen, Y.; Pang, L.; Li, Y.; Luo, H.; Duan, G.; Mei, C.; Xu, W.; Zhou, W.; Liu, K.; Jiang, S. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Compos. Appl. Sci. Manuf. 2020, 135, 105960. [Google Scholar] [CrossRef]
- Xia, X.; Li, Y.; Long, L.; Xiao, P.; Luo, H.; Pang, L.; Xiao, X.; Zhou, W. Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range. J. Eur. Ceram. Soc. 2020, 40, 3423–3430. [Google Scholar] [CrossRef]
- Shi, M.; Feng, C.-P.; Li, J.; Guo, S.-Y. Machine learning to optimize nanocomposite materials for electromagnetic interference shielding. Compos. Sci. Technol. 2022, 223, 109414. [Google Scholar] [CrossRef]
- Silva, V.A.; Folgueras, L.d.C.; Cândido, G.M.; Paula, A.L.d.; Rezende, M.C.; Costa, M.L. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Mater. Res. 2013, 16, 1299–1308. [Google Scholar] [CrossRef]
- Shen, B.; Zhai, W.; Zheng, W. Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding. Adv. Funct. Mater. 2014, 24, 4542–4548. [Google Scholar] [CrossRef]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Voronovich, S.; Lambin, P.; Kaplas, T.; Svirko, Y. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 2014, 4, 7191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. [Google Scholar] [CrossRef]
- Li, J.-S.; Huang, H.; Zhou, Y.-J.; Zhang, C.-Y.; Li, Z.-T. Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 2017, 32, 1213–1230. [Google Scholar] [CrossRef]
- Muhammed Shameem, M.; Sasikanth, S.M.; Annamalai, R.; Ganapathi Raman, R. A brief review on polymer nanocomposites and its applications. Mater. Today Proc. 2021, 45, 2536–2539. [Google Scholar] [CrossRef]
- Shukla, P.; Saxena, P. Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope. Chin. J. Polym. Sci. 2021, 39, 665–691. [Google Scholar] [CrossRef]
- Hiremath, A.; Murthy, A.A.; Thipperudrappa, S.; NK, B. Nanoparticles Filled Polymer Nanocomposites: A Technological Review. Cogent Eng. 2021, 8, 1991229. [Google Scholar] [CrossRef]
- Mouritz, A.P. (Ed.) 13-Polymers for aerospace structures. In Introduction to Aerospace Materials; Woodhead Publishing: Cambridge, UK, 2012; pp. 268–302. [Google Scholar]
- Peng, C.; Zhang, X. Chemical Functionalization of Graphene Nanoplatelets with Hydroxyl, Amino, and Carboxylic Terminal Groups. Chemistry 2021, 3, 873–888. [Google Scholar] [CrossRef]
- Xue, H.; Lu, Y.; Geng, H.; Dong, B.; Wu, S.; Fan, Q.; Zhang, Z.; Li, X.; Zhou, X.; Wang, J. Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation. J. Phys. Chem. Lett. 2019, 10, 2458–2462. [Google Scholar] [CrossRef]
- Shayimova, J.; Amirov, R.R.; Iakunkov, A.; Talyzin, A.; Dimiev, A.M. Carboxyl groups do not play the major role in binding metal cations by graphene oxide. Phys. Chem. Chem. Phys. 2021, 23, 17430–17439. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Gao, P.; Wang, A.; Zeng, C.; Bao, G.; Tian, D. Insights into the influence of functional groups on the properties of graphene from first-principles calculations. J. Phys. Org. Chem. 2022, 2022, e4387. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Zhang, M.; Yao, B.; Li, Y.; Huang, L.; Li, C.; Shi, G. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem. Sci. 2016, 7, 1874–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, T.K.; Singh, B.P.; Mathur, R.B.; Dhakate, S.R. Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 2014, 6, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.-S.; Yang, J.; Song, W.-L.; Zhang, D.-Q.; Wen, B.; Jin, H.-B.; Hou, Z.-L.; Yuan, J. Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949–6956. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Kumari, S.; Kumar, R.; Teotia, S.; Singh, B.P.; Singh, A.P.; Dhawan, S.K.; Dhakate, S.R. Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2016, 8, 10600–10608. [Google Scholar] [CrossRef]
- Singh, B.P.; Prasanta, V.; Choudhary, V.; Saini, P.; Pande, S.; Singh, V.N.; Mathur, R.B. Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites. J. Nanopart. Res. 2013, 15, 1554. [Google Scholar] [CrossRef]
- Das, S.; Sharma, S.; Yokozeki, T.; Dhakate, S. Conductive layer-based multifunctional structural composites for electromagnetic interference shielding. Compos. Struct. 2021, 261, 113293. [Google Scholar] [CrossRef]
- Khomenko, V.; Butenko, O.; Chernysh, O.; Barsukov, V.; Suchea, M.P.; Koudoumas, E. Electromagnetic Shielding of Composite Films Based on Graphite, Graphitized Carbon Black and Iron-Oxide. Coatings 2022, 12, 665. [Google Scholar] [CrossRef]
- Tudose, I.V.; Mouratis, K.; Ionescu, O.N.; Romanitan, C.; Pachiu, C.; Popescu, M.; Khomenko, V.; Butenko, O.; Chernysh, O.; Kenanakis, G.; et al. Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications. Nanomaterials 2022, 12, 487. [Google Scholar] [CrossRef]
- Singh, K.; Ohlan, A.; Dhawan, S. Polymer-graphene nanocomposites: Preparation, characterization, properties, and applications. Nanocompos.-New Trends Dev. 2012, 37–72. [Google Scholar] [CrossRef] [Green Version]
- Rabchinskii, M.K.; Ryzhkov, S.A.; Kirilenko, D.A.; Ulin, N.V.; Baidakova, M.V.; Shnitov, V.V.; Pavlov, S.I.; Chumakov, R.G.; Stolyarova, D.Y.; Besedina, N.A.; et al. From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Sci. Rep. 2020, 10, 6902. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Wang, J.W.; Kuo, W.S.; Tai, N.H.; Salzmann, C.; Li, W.L.; Hollertz, R.; Nüesch, F.A.; Chu, B.T.T. Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem. Phys. Lett. 2012, 531, 6–10. [Google Scholar] [CrossRef]
- Wazalwar, R.; Sahu, M.; Raichur, A.M. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: Current status and road to industrialization. Nanoscale Adv. 2021, 3, 2741–2776. [Google Scholar] [CrossRef]
Sample | Type of Graphene | Graphene Weight % | Iron Oxide Weight % |
---|---|---|---|
MB013 | G-HMDA | 5 | 2.5 |
MB014 | G-HMDA | 5 | 5 |
MB015 | G-HMDA | 10 | 5 |
MB016 | G-PGMA | 5 | 2.5 |
MB017 | G | 5 | 2.5 |
MB018 | GO | 5 | 2.5 |
Matrix | Type of Filler Material | Filler wt% | Thickness of Sample | Frequency Range | Shielding Effectiveness (dB) | Ref. |
---|---|---|---|---|---|---|
Polyaniline (PANI) | Graphene and MWCNTs | 5–10 | 2.5 mm | 12.4–18 GHz | 98 | [39] |
Wax | PANI/Fe3O4 and MWCNTs | 20 | 4 mm | 2–18 GHz | 16 | [40] |
Mesocarbon microbead | MWCNTs | 10–25 | 0.15–0.6 | 8.2–12.4 GHz | 31–56 | [41] |
Epoxy resin | MWNCTs | 4.2–20.4 | 0.35–1.75 mm | 19–60 | [42] | |
PANI:DBSA (dodecylbenzenesulfonic acid) mixed with divinyl benzene (DVB) | - | 1.8 | 8.2–12.4 GHz | 13 | [43] | |
Polyvinyl butyral | Graphite/graphitized carbon black/Fe2O3 | 50/17/17 | 0.06 mm | 0.3–4 GHz | 9.1–17.8 | [44] |
PANI doped with poly (styrene sulfonic acid) (PSS) or HCl or HBr and Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with PSS | Graphene | 6–18 | 0.5 mm | 3.4–6 GHz | 60 | [45] |
Epoxy resin | Fe3O4 and functionalized Graphenes | 2.5–10 | 0.1 mm | 10.5–12.5 GhZ | 4.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontaș, M.G.; Diacon, A.; Călinescu, I.; Necolau, M.I.; Dinescu, A.; Toader, G.; Ginghină, R.; Vizitiu, A.-M.; Velicu, V.; Palade, P.; et al. Epoxy Coatings Containing Modified Graphene for Electromagnetic Shielding. Polymers 2022, 14, 2508. https://doi.org/10.3390/polym14122508
Bontaș MG, Diacon A, Călinescu I, Necolau MI, Dinescu A, Toader G, Ginghină R, Vizitiu A-M, Velicu V, Palade P, et al. Epoxy Coatings Containing Modified Graphene for Electromagnetic Shielding. Polymers. 2022; 14(12):2508. https://doi.org/10.3390/polym14122508
Chicago/Turabian StyleBontaș, Marius Gabriel, Aurel Diacon, Ioan Călinescu, Mădălina Ioana Necolau, Adrian Dinescu, Gabriela Toader, Raluca Ginghină, Alexandru-Mădălin Vizitiu, Valentin Velicu, Petru Palade, and et al. 2022. "Epoxy Coatings Containing Modified Graphene for Electromagnetic Shielding" Polymers 14, no. 12: 2508. https://doi.org/10.3390/polym14122508