Eco-Composites from Silkworm Meal and Polycaprolactone: Effect of Formulation and Processing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methodology
2.3.1. Dynamic Mechanical Thermal Analysis (DMTA)
2.3.2. Tensile Tests
2.3.3. Water Uptake Capacity (WUC)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Blends
3.2. Bioplastics
3.2.1. Rheological Characterisation
- Stress-strain curves
3.2.2. Water Uptake Capacity (WUC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef] [Green Version]
- Hicks, T.M.; Verbeek, C.J.R. Chapter 1-Protein-Rich By-Products: Production Statistics, Legislative Restrictions, and Management Options. In Protein Byproducts. Transformation from Environmental Burden into Value-Added Products; Dhillon, G., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–18. ISBN 978-0-12-802391-4. [Google Scholar]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Mostafa, N.A.; Farag, A.A.; Abo-dief, H.M.; Tayeb, A.M. Production of biodegradable plastic from agricultural wastes. Arab. J. Chem. 2014, 11, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1, 13379–13398. [Google Scholar] [CrossRef] [Green Version]
- Capezza, A.J.; Lundman, M.; Olsson, R.T.; Newson, W.R.; Hedenqvist, M.S.; Johansson, E. Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules 2020, 21, 1709–1719. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Gandini, A. Materials from Renewable Resources. MRS Bull. 2010, 35, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Jerez, A.; Partal, P.; Martínez, I.; Gallegos, C.; Guerrero, A. Rheology and processing of gluten based bioplastics. Biochem. Eng. J. 2005, 26, 131–138. [Google Scholar] [CrossRef]
- Shi, W.; Dumont, M.J. Review: Bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. J. Mater. Sci. 2014, 49, 1915–1930. [Google Scholar] [CrossRef]
- López-Castejón, M.L.; Bengoechea, C.; García-Morales, M.; Martínez, I. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties. Carbohydr. Polym. 2016, 152, 62–69. [Google Scholar] [CrossRef]
- Herald, T.J.; Obuz, E.; Twombly, W.W.; Rausch, K.D. Tensile Properties of Extruded Corn Protein Low-Density Polyethylene Films. Cereal Chem. 2002, 79, 261–264. [Google Scholar] [CrossRef]
- Hurtado, S.; Dagà, I.; Espigulé, E.; Parés, D.; Saguer, E.; Toldrà, M.; Carretero, C. Use of porcine blood plasma in “phosphate-free frankfurters”. Procedia Food Sci. 2011, 1, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Bances, M.; Rendueles, M.; Díaz, M. Functional properties of isolated porcine blood proteins. Int. J. Food Sci. Technol. 2009, 44, 807–814. [Google Scholar] [CrossRef]
- Aspevik, T.; Oterhals, Å.; Rønning, S.B.; Altintzoglou, T.; Wubshet, S.G.; Gildberg, A.; Afseth, N.K.; Whitaker, R.D.; Lindberg, D. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry BT-Chemistry and Chemical Technologies in Waste Valorization; Lin, C.S.K., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 123–150. ISBN 978-3-319-90653-9. [Google Scholar]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Lakemond, C.M.M.; Ottevanger, E.; Bosch, G.; van Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets: A Feasibility Study = I; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012; Volume 50, Available online: https://library.wur.nl/WebQuery/wurpubs/livestock-reports/428703 (accessed on 8 May 2022).
- FAO; FAOSTAT. Food and Agriculture Organization of the United Nations. 2012. Available online: https://www.feedipedia.org/node/14675 (accessed on 8 May 2022).
- Sadat, A.; Biswas, T.; Cardoso, M.H.; Mondal, R.; Ghosh, A.; Dam, P.; Nesa, J.; Chakraborty, J.; Bhattacharjya, D.; Franco, O.L.; et al. Silkworm pupae as a future food with nutritional and medicinal benefits. Curr. Opin. Food Sci. 2022, 44, 100818. [Google Scholar] [CrossRef]
- Ullah, R.; Lohakare, J. Replacement of Soybean Meal with Silkworm Meal In The Diets of White Leghorn Layers and Effects on Performance, Apparent Total Tract Digestibility, Blood Profile and Egg Quality. Int. J. Vet. Heal. Sci. Res. 2017, 7, 200–207. [Google Scholar] [CrossRef]
- Wei, Z.-J.; Liao, A.-M.; Zhang, H.-X.; Liu, J.; Jiang, S.-T. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresour. Technol. 2009, 100, 4214–4219. [Google Scholar] [CrossRef]
- Wang, J.; Wu, F.A.; Liang, Y.; Wang, M. Process optimization for the enrichment of α-linolenic acid from silkworm pupal oil using response surface methodology. Afr. J. Biotechnol. 2010, 9, 2956–2964. [Google Scholar] [CrossRef]
- Brown, J.E.; Davidowski, S.K.; Xu, D.; Cebe, P.; Onofrei, D.; Holland, G.P.; Kaplan, D.L. Thermal and Structural Properties of Silk Biomaterials Plasticized by Glycerol. Biomacromolecules 2016, 17, 3911–3921. [Google Scholar] [CrossRef]
- Nassar, M.M.A.; Alzebdeh, K.I.; Pervez, T.; Al-Hinai, N.; Munam, A. Progress and challenges in sustainability, compatibility, and production of eco-composites: A state-of-art review. J. Appl. Polym. Sci. 2021, 138, 51284. [Google Scholar] [CrossRef]
- Félix, M.; Romero, A.; Martín-Alfonso, J.E.; Guerrero, A. Development of crayfish protein-PCL biocomposite material processed by injection moulding. Compos. Part B Eng. 2015, 78, 291–297. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2007; ISBN 9780471736967. [Google Scholar]
- Gonçalves, B.M.M.; Camillo, M.D.O.; Oliveira, M.P.; Carreira, L.G.; Moulin, J.C.; Fantuzzi Neto, H.; de Oliveira, B.F.; Pereira, A.C.; Monteiro, S.N. Surface Treatments of Coffee Husk Fiber Waste for Effective Incorporation into Polymer Biocomposites. Polymers 2021, 13, 3428. [Google Scholar] [CrossRef]
- Hejna, A.; Formela, K.; Saeb, M.R. Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites. Ind. Crops Prod. 2015, 76, 725–733. [Google Scholar] [CrossRef]
- Wu, C.S. Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym. Degrad. Stab. 2003, 80, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Herzele, S.; Veigel, S.; Liebner, F.; Zimmermann, T.; Gindl-Altmutter, W. Reinforcement of polycaprolactone with microfibrillated lignocellulose. Ind. Crops Prod. 2016, 93, 302–308. [Google Scholar] [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U. Modified and thermoplastic rapeseed straw xylan: A renewable additive in PCL biocomposites. Ind. Crops Prod. 2018, 119, 73–82. [Google Scholar] [CrossRef]
- Delgado, M.; Felix, M.; Bengoechea, C. Development of bioplastic materials: From rapeseed oil industry by products to added-value biodegradable biocomposite materials. Ind. Crops Prod. 2018, 125, 401–407. [Google Scholar] [CrossRef]
- López Rocha, C.J.; Álvarez-Castillo, E.; Estrada Yáñez, M.R.; Bengoechea, C.; Guerrero, A.; Orta Ledesma, M.T. Development of bioplastics from a microalgae consortium from wastewater. J. Environ. Manag. 2020, 263, 110353. [Google Scholar] [CrossRef]
- Álvarez-Castillo, E.; Bengoechea, C.; Rodríguez, N.; Guerrero, A. Development of green superabsorbent materials from a by-product of the meat industry. J. Clean. Prod. 2019, 223, 651–661. [Google Scholar] [CrossRef]
- Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. J. Nutr. Sci. Vitaminol. 2010, 56, 446–448. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.-Y.; Ren, J.; Wang, Q.-F. Rheology of poly(propylene)/clay nanocomposites. J. Appl. Polym. Sci. 2004, 91, 2427–2434. [Google Scholar] [CrossRef]
- Wyss, H.M. Rheology of soft materials. In Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics; 2016; pp. 149–164. Available online: https://books.google.com.hk/books?hl=zh-CN&lr=&id=BuUGCwAAQBAJ&oi=fnd&pg=PA149&dq=35.%09Wyss,+H.M.+Rheology+of+soft+materials.+Fluids+Colloids+Soft+Mater.+Introd.+Soft+Matter+Phys.+2016,+149%E2%80%93164&ots=Dl74cR5afE&sig=gpIQQEYK6ZXbRLcnqlwQBegaiAA&redir_esc=y#v=onepage&q&f=false (accessed on 8 May 2022).
- Fuentes-Lemus, E.; Hägglund, P.; López-Alarcón, C.; Davies, M.J. Oxidative crosslinking of peptides and proteins: Mechanisms of formation, detection, characterization and quantification. Molecules 2021, 27, 15. [Google Scholar] [CrossRef]
- Fernández-Espada, L.; Bengoechea, C.; Cordobés, F.; Guerrero, A. Thermomechanical properties and water uptake capacity of soy protein-based bioplastics processed by injection molding. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Bengoechea, C.; Arrachid, A.; Guerrero, A.; Hill, S.E.; Mitchell, J.R. Relationship between the glass transition temperature and the melt flow behavior for gluten, casein and soya. J. Cereal Sci. 2007, 45, 275–284. [Google Scholar] [CrossRef]
- Guan, J.; Porter, D.; Vollrath, F. Thermally Induced Changes in Dynamic Mechanical Properties of Native Silks. Biomacromolecules 2013, 14, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.; Benze, R.; Ferrão, E.S.; Ditchfield, C.; Coelho, A.C.V.; Tadini, C.C. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Sci. Technol. 2012, 46, 110–117. [Google Scholar] [CrossRef]
- Trakoolwannachai, V.; Kheolamai, P.; Ummartyotin, S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos. Part B Eng. 2019, 173, 106974. [Google Scholar] [CrossRef]
- Zhong, Z.; Sun, X.S. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer 2001, 42, 6961–6969. [Google Scholar] [CrossRef]
- Paetau, I.; Chen, C.Z.; Jane, J.L. Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical-properties and water-absorption. Ind. Eng. Chem. Res. 1994, 33, 1821–1827. [Google Scholar] [CrossRef]
PCL Content (%) | Temperature (°C) | Maximum Stress (Pa) | Maximum Strain (%) | Young’s Modulus (Pa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 100 | 6.10 × 105 | ± | 5.44 × 104 | 1.23 | ± | 0.17 | 1.02 × 106 | ± | 8.58 × 104 |
120 | 7.51 × 105 | ± | 4.39 × 104 | 1.51 | ± | 0.22 | 1.09 × 106 | ± | 3.23 × 104 | |
140 | 1.17 × 106 | ± | 5.01 × 104 | 2.43 | ± | 0.18 | 1.15 × 106 | ± | 5.62 × 104 | |
10 | 100 | 6.98 × 105 | ± | 7.91 × 104 | 2.95 | ± | 0.30 | 7.69 × 105 | ± | 1.03 × 105 |
120 | 7.84 × 105 | ± | 1.15 × 104 | 2.36 | ± | 0.16 | 7.92 × 105 | ± | 4.36 × 104 | |
140 | 8.02 × 105 | ± | 1.18 × 104 | 3.07 | ± | 0.28 | 7.11 × 105 | ± | 7.12 × 104 | |
15 | 100 | 9.83 × 105 | ± | 3.75 × 104 | 3.55 | ± | 0.16 | 8.74 × 105 | ± | 6.18 × 104 |
120 | 1.16 × 106 | ± | 4.36 × 104 | 3.27 | ± | 0.42 | 9.31 × 105 | ± | 5.15 × 104 | |
140 | 1.33 × 106 | ± | 1.49 × 105 | 3.02 | ± | 0.24 | 1.00 × 106 | ± | 0.00 × 100 | |
20 | 100 | 1.41 × 106 | ± | 5.03 × 104 | 6.98 | ± | 0.40 | 9.42 × 105 | ± | 4.94 × 104 |
120 | 9.86 × 105 | ± | 1.47 × 105 | 4.24 | ± | 0.87 | 9.32 × 105 | ± | 3.38 × 104 | |
140 | 1.17 × 106 | ± | 5.45 × 104 | 5.35 | ± | 0.40 | 9.10 × 105 | ± | 9.55 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Castejón, M.L.; Reviriego, M.L.; Álvarez-Castillo, E.; Aguilar, J.M.; Bengoechea, C. Eco-Composites from Silkworm Meal and Polycaprolactone: Effect of Formulation and Processing Conditions. Polymers 2022, 14, 2342. https://doi.org/10.3390/polym14122342
López-Castejón ML, Reviriego ML, Álvarez-Castillo E, Aguilar JM, Bengoechea C. Eco-Composites from Silkworm Meal and Polycaprolactone: Effect of Formulation and Processing Conditions. Polymers. 2022; 14(12):2342. https://doi.org/10.3390/polym14122342
Chicago/Turabian StyleLópez-Castejón, María Luisa, María Luisa Reviriego, Estefanía Álvarez-Castillo, José M. Aguilar, and Carlos Bengoechea. 2022. "Eco-Composites from Silkworm Meal and Polycaprolactone: Effect of Formulation and Processing Conditions" Polymers 14, no. 12: 2342. https://doi.org/10.3390/polym14122342
APA StyleLópez-Castejón, M. L., Reviriego, M. L., Álvarez-Castillo, E., Aguilar, J. M., & Bengoechea, C. (2022). Eco-Composites from Silkworm Meal and Polycaprolactone: Effect of Formulation and Processing Conditions. Polymers, 14(12), 2342. https://doi.org/10.3390/polym14122342