Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA)
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Sample Preparation
2.1.1. Materials
2.1.2. Preparation of Modified CNTs
2.1.3. Preparation of PLLA/CNT Composites
2.2. Characterization
2.2.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.2.2. X-ray Photoelectron Spectroscopy (XPS)
2.2.3. Thermogravimetric Analysis (TGA)
2.2.4. Transmission Electron Microscopy (TEM)
2.2.5. Wide-Angle X-ray Diffraction (WAXD)
2.2.6. Differential Scanning Calorimetry (DSC)
2.2.7. Polarized Optical Microscopy (PLOM)
3. Results and Discussion
3.1. Characterization of CNTs
3.1.1. FTIR
3.1.2. XPS
3.1.3. TGA
3.1.4. TEM
3.1.5. WAXD
3.2. Crystallization Behavior of PLLA/CNT Composites
3.2.1. DSC
3.2.2. WAXD
3.2.3. PLOM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muller, J.; Gonzalez-Martinez, C.; Chiralt, A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Bhagia, S.; Bornani, K.; Agrawal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Calamak, S.; Ermis, M. In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications. J. Mater. Res. 2021, 36, 166–175. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. Engl. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Lasprilla, A.J.; Martinez, G.A.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012, 30, 321–328. [Google Scholar] [CrossRef]
- Cocca, M.; Androsch, R.; Righetti, M.C.; Malinconico, M.; Di Lorenzo, M.L. Conformationally disordered crystals and their influence on material properties: The cases of isotactic polypropylene, isotactic poly(1-butene), and poly(l-lactic acid). J. Mol. Struct. 2014, 1078, 114–132. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Longo, A.; Dal Poggetto, G.; Malinconico, M.; Laurienzo, P.; Di Maio, E.; Di Lorenzo, M.L. Enhancement of crystallization kinetics of poly(l-lactic acid) by grafting with optically pure branches. Polymer 2021, 227, 123852. [Google Scholar] [CrossRef]
- Park, H.S.; Hong, C.K. Relationship between the Stereocomplex Crystallization Behavior and Mechanical Properties of PLLA/PDLA Blends. Polymers 2021, 13, 1851. [Google Scholar] [CrossRef]
- Liu, J.-H.; Huang, M.-L.; Tao, J.-R.; Weng, Y.-X.; Wang, M. Fabrication of recyclable nucleating agent and its effect on crystallization, gas barrier, thermal, and mechanical performance of Poly(-lactide). Polymer 2021, 231, 124121. [Google Scholar] [CrossRef]
- Silva, I.D.D.; Schafer, H.; Jaques, N.G.; Siqueira, D.D.; Ries, A.; Morais, D.D.D.; Haag, K.; Koschek, K.; Carvalho, L.H.; Wellen, R.M.R. An investigation of PLA/Babassu cold crystallization kinetics. J. Therm. Anal. Calorim. 2020, 141, 1389–1397. [Google Scholar] [CrossRef]
- Basheer, B.V.; George, J.J.; Siengchin, S.; Parameswaranpillai, J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. Nano-Struct. Nano-Objects 2020, 22, 100429. [Google Scholar] [CrossRef]
- Raphey, V.R.; Henna, T.K.; Nivitha, K.P.; Mufeedha, P.; Sabu, C.; Pramod, K. Advanced biomedical applications of carbon nanotube. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, J.; Sakai, E.; Wei, X. The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Compos. Part. A Appl. Sci. Manuf. 2016, 89, 18–25. [Google Scholar] [CrossRef]
- Goutianos, S.; Peijs, T. On the low reinforcing efficiency of carbon nanotubes in high-performance polymer fibres. Nanocomposites 2021, 7, 53–69. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, H.; Chang, H.; Qiu, S.; Deng, B.; Liao, J. Covalent and Non-covalent Chemical Modification of Multi-walled Carbon Nanotubes with Tetra-(4-hydroxylphenyl)porphyrin and Its Complexes. Chin. J. Chem. 2011, 29, 1901–1905. [Google Scholar] [CrossRef]
- Ciofani, G.; Obata, Y.; Sato, I.; Okamura, Y.; Raffa, V.; Menciassi, A.; Dario, P.; Takeda, N.; Takeoka, S. Realization, characterization and functionalization of lipidic wrapped carbon nanotubes. J. Nanoparticle Res. 2008, 11, 477–484. [Google Scholar] [CrossRef]
- Wilms, D.; Stiriba, S.E.; Frey, H. Hyperbranched polyglycerols: From the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem Res. 2010, 43, 129–141. [Google Scholar] [CrossRef]
- Feng, L.; Li, R.; Yang, H.; Chen, S.; Yang, W. The Hyperbranched Polyester Reinforced Unsaturated Polyester Resin. Polymers 2022, 14, 1127. [Google Scholar] [CrossRef]
- Sun, J.; Jin, Y.; Wang, B.; Tian, H.; Kang, K.; Men, S.; Weng, Y. High-toughening modification of polylactic acid by long-chain hyperbranched polymers. J. Appl. Polym. Sci. 2021, 138, 51295. [Google Scholar] [CrossRef]
- Nyambo, C.; Misra, M.; Mohanty, A.K. Toughening of brittle poly(lactide) with hyperbranched poly(ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J. Mater. Sci. 2012, 47, 5158–5168. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.G.; Kim, S.H. Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 46, 11–18. [Google Scholar] [CrossRef]
- Okpalugo, T.I.T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N.M.D. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Properties and Morphologies of Poly(L-Lactide). 1. Annealing Condition Effects on Properties and Morphologies of Poly(L-Lactide). Polymer 1995, 36, 2709–2716. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, W.; Song, X.; Kang, J.; Cao, Y.; Xiang, M. Effects of Hyperbranched Polyester-Modified Carbon Nanotubes on the Crystallization Kinetics of Polylactic Acid. ACS Omega 2021, 6, 10362–10370. [Google Scholar] [CrossRef] [PubMed]
- Yuanjie, L.; Liu, H.; Huang, X.; Song, X.; Kang, J.; Chen, Z.; Zeng, F.; Chen, J. Investigation on the Roles of β-Nucleating Agents in Crystallization and Polymorphic Behavior of Isotactic Polypropylene. Polym. Sci. Ser. A 2020, 62, 470–480. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, X.; Fang, Y.; Chen, J.; Kang, J.; Cao, Y.; Xiang, M. Investigation on the Effect of Hyperbranched Polyester Grafted Graphene Oxide on the Crystallization Behaviors of β-Nucleated Isotactic Polypropylene. Polymers 2019, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Song, X.; Zhou, R.; Wu, Z.; Hu, B.; Zhang, Y.; Liang, Z.; Chen, Z.; Kang, J.; Xiang, M. Influences of molecular structure on the isothermal crystallization behavior and mechanical properties of β-nucleated isotactic polypropylene. Polym.-Plast. Technol. Mater. 2020, 59, 1724–1735. [Google Scholar] [CrossRef]
- Wu, D.F.; Wu, L.; Wu, L.F.; Xu, B.; Zhang, Y.S.; Zhang, M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J. Polym. Sci. Pol. Phys. 2007, 45, 1100–1113. [Google Scholar] [CrossRef]
Content | PLLA | PLLA/C1 | PLLA/C-N0.1 | PLLA/C-N0.5 | PLLA/C-N1 |
---|---|---|---|---|---|
PLLA (g) | 40 | 40 | 40 | 40 | 40 |
CNTs-N103 (wt%) | 0 | 0 | 0.1 | 0.5 | 1 |
CNTs (wt%) | 0 | 1 | 0 | 0 | 0 |
Sample | C1s (%) | N1s (%) | O1s (%) |
---|---|---|---|
CNTs-COOH | 96.82 | 0 | 3.18 |
CNTs-N103 | 93.98 | 2.63 | 3.39 |
HBP N103 | 65.80 | 28.52 | 5.68 |
Crystallization Process | Subsequent Melting Process | |||||
---|---|---|---|---|---|---|
Sample | Tc (°C) | Enthalpy (J/g) | Tcc (°C) | ΔHcc (J/g) | ΔHm (J/g) | Xc (%) |
PLLA | 99.2 | 1.8 | 111.5 | 28.6 | 33.8 | 5.6 |
PLLA/C1 | 99.8 | 17.0 | 110.4 | 15.2 | 35.0 | 21.2 |
PLLA/C-N0.1 | 100.0 | 16.1 | 110.3 | 14.9 | 34.9 | 21.3 |
PLLA/C-N0.5 | 100.8 | 19.0 | 108.8 | 8.8 | 32.6 | 25.4 |
PLLA/C-N1 | 101.1 | 27.3 | 106.6 | 7.3 | 35.2 | 29.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Lu, S.; Sun, C.; Song, Z.; Zhang, F.; Kang, J.; Cao, Y.; Xiang, M. Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA). Polymers 2022, 14, 2188. https://doi.org/10.3390/polym14112188
Shen B, Lu S, Sun C, Song Z, Zhang F, Kang J, Cao Y, Xiang M. Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA). Polymers. 2022; 14(11):2188. https://doi.org/10.3390/polym14112188
Chicago/Turabian StyleShen, Bofan, Shulai Lu, Chunfu Sun, Zhenbiao Song, Fuyi Zhang, Jian Kang, Ya Cao, and Ming Xiang. 2022. "Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA)" Polymers 14, no. 11: 2188. https://doi.org/10.3390/polym14112188
APA StyleShen, B., Lu, S., Sun, C., Song, Z., Zhang, F., Kang, J., Cao, Y., & Xiang, M. (2022). Effects of Amino Hyperbranched Polymer-Modified Carbon Nanotubes on the Crystallization Behavior of Poly (L-Lactic Acid) (PLLA). Polymers, 14(11), 2188. https://doi.org/10.3390/polym14112188