Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Lignocellulose Biomass
2.3. Preparation of Cellulose Nanofibers
2.4. Preparation of Treated Paper Samples
2.4.1. Preparation of Cottonseed Protein and Nanocellulose Formulations
2.4.2. Treatment of Paper Samples
2.5. Thermogravimetric Analysis (TGA)
2.6. Microscopic Analysis of Paper
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. Optical Microscopy
2.7. Analysis of Paper Samples
3. Results and Discussion
3.1. Preparation of Formulations and Treatment of Paper Samples
3.2. Characterization of Paper Samples
3.3. Paper Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, J.C. Paper Chemistry, 1st ed.; Roberts, J.C., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; p. 248. [Google Scholar] [CrossRef]
- Ek, M.; Gellerstedt, G.; Henriksson, G. Paper Chemistry and Technology; De Gruyter: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Basu, S.; Malik, S.; Joshi, G.; Gupta, P.K.; Rana, V. Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100050. [Google Scholar] [CrossRef]
- Hubbe, M.A. Dry Strength Additives. Available online: http://www4.ncsu.edu/~hubbe/DSR.htm (accessed on 8 July 2021).
- Hubbe, M.A. Wet Strength. Available online: https://projects.ncsu.edu/project/hubbepaperchem/TShoot/G_WStren.htm (accessed on 8 July 2021).
- Park, H.J.; Kim, S.H.; Lim, S.T.; Shin, D.H.; Choi, S.Y.; Hwang, K.T. Grease resistance and mechanical properties of isolated soy protein-coated paper. J. Am. Oil Chem. Soc. 2000, 77, 269–273. [Google Scholar] [CrossRef]
- Jin, H.; Lucia, L.A.; Rojas, O.J.; Hubbe, M.A.; Pawlak, J.J. Survey of soy protein flour as a novel dry strength agent for papermaking furnishes. J. Agric. Food Chem. 2012, 60, 9828–9833. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, J.C.; Niemi, N.; Kumpunen, J.; Lucia, L.A.; Rojas, O.J. Soy Protein-Based Polyelectrolyte Complexes as Biobased Wood Fiber Dry Strength Agents. ACS Sustain. Chem. Eng. 2014, 2, 2267–2274. [Google Scholar] [CrossRef]
- Salam, A.; Lucia, L.A.; Jameelt, H. A New Class of Biobased Paper Dry Strength Agents: Synthesis and Characterization of Soy-Based Polymers. ACS Sustain. Chem. Eng. 2015, 3, 524–532. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Hubbe, M.A.; Tayeb, P.; Pal, L.; Rojas, O.J. Soy Proteins as a Sustainable Solution to Strengthen Recycled Paper and Reduce Deposition of Hydrophobic Contaminants in Papermaking: A Bench and Pilot-Plant Study. ACS Sustain. Chem. Eng. 2017, 5, 7211–7219. [Google Scholar] [CrossRef]
- Flory, A.R.; Vicuna Requesens, D.; Devaiah, S.P.; Teoh, K.T.; Mansfield, S.D.; Hood, E.E. Development of a green binder system for paper products. BMC Biotechnol. 2013, 13, 28. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.N.; Villalpando, A.; Easson, M.W.; Dowd, M.K. Characterization of cottonseed protein isolate as a paper additive. Int. J. Polym. Anal. Charact. 2017, 22, 699–708. [Google Scholar] [CrossRef]
- Arieli, A. Whole cottonseed in dairy cattle feeding: A review. Anim. Feed. Sci. Technol. 1998, 72, 97–110. [Google Scholar] [CrossRef]
- Coppock, C.E.; Lanham, J.K.; Horner, J.I. A Review of the Nutritive-Value and Utilization of Whole Cottonseed, Cottonseed Meal and Associated by-Products by Dairy-Cattle. Anim. Feed. Sci. Technol. 1987, 18, 89–129. [Google Scholar] [CrossRef]
- Cheng, H.N.; Rau, M.; Dowd, M.K.; Easson, M.W.; Condon, B.D. Hydrogenated Cottonseed Oil as Raw Material for Biobased Materials. In Green Polymer Chemistry: Biocatalysis and Materials II; American Chemical Society: Washington, DC, USA, 2013; Volume 1144, pp. 359–371. [Google Scholar]
- Cheng, H.N.; He, Z.; Ford, C.; Wyckoff, W.; Wu, Q. A Review of Cottonseed Protein Chemistry and Non-Food Applications. Sustain. Chem. 2020, 1, 256–274. [Google Scholar] [CrossRef]
- Cheng, H.N.; He, Z.; Dowd, M.K.; Klasson, K.T. Polymer blends involving cottonseed protein and cottonseed meal. In Proceedings of the National Cotton Council Beltwide Cotton Conferences, New Orleans, LA, USA, 5 January 2021; pp. 63–68. [Google Scholar]
- Cheng, H.N.; Ford, C.; Dowd, M.K.; He, Z.Q. Soy and cottonseed protein blends as wood adhesives. Ind. Crop. Prod. 2016, 85, 324–330. [Google Scholar] [CrossRef]
- Cheng, H.N.; Ford, C.; Dowd, M.K.; He, Z.Q. Use of additives to enhance the properties of cottonseed protein as wood adhesives. Int. J. Adhes. Adhes. 2016, 68, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.N.; Ford, C.; Dowd, M.K.; He, Z.Q. Effects of phosphorus-containing additives on soy and cottonseed protein as wood adhesives. Int. J. Adhes. Adhes. 2017, 77, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.N.; Kilgore, K.; Ford, C.; Fortier, C.; Dowd, M.K.; He, Z.Q. Cottonseed protein-based wood adhesive reinforced with nanocellulose. J. Adhes. Sci. Technol. 2019, 33, 1357–1368. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose 2018, 25, 2151–2189. [Google Scholar] [CrossRef]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J.; et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [Green Version]
- Easson, M.W.; Jordan, J.H. Preparation of Cellulose Nanocrystals from Cotton Gin Motes and Cotton Gin Trash. In Conversion of Renewable Biomass into Bioproducts; American Chemical Society: Washington, DC, USA, 2021; Volume 1392, pp. 15–33. [Google Scholar]
- Ahola, S.; Osterberg, M.; Laine, J. Cellulose nanofibrils-adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive. Cellulose 2008, 15, 303–314. [Google Scholar] [CrossRef]
- Sun, B.; Hou, Q.X.; Liu, Z.H.; Ni, Y.H. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 2015, 22, 1135–1146. [Google Scholar] [CrossRef]
- Jordan, J.H.; Cheng, H.N.; Easson, M.W.; Yao, W.; Condon, B.D.; Gibb, B.C. Effect of Nanocellulose on the Properties of Cottonseed Protein Isolate as a Paper Strength Agent. Materials 2021, 14, 4128. [Google Scholar] [CrossRef]
- Mackin, R.T.; Fontenot, K.R.; Edwards, J.V.; Prevost, N.T.; Jordan, J.H.; Easson, M.W.; Condon, B.D.; French, A.D. Detection of Human Neutrophil Elastase by Fluorescent Peptide Sensors Conjugated to TEMPO-Oxidized Nanofibrillated Cellulose. Int. J. Mol. Sci. 2022, 23, 3101. [Google Scholar] [CrossRef] [PubMed]
- Mackin, R.T.; Fontenot, K.R.; Edwards, J.V.; Prevost, N.T.; Grimm, C.; Condon, B.D.; Liebner, F.; Jordan, J.H.; Easson, M.W.; French, A.D. Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose 2022, 29, 1293–1305. [Google Scholar] [CrossRef]
- Doench, I.; Ahn Tran, T.; David, L.; Montembault, A.; Viguier, E.; Gorzelanny, C.; Sudre, G.; Cachon, T.; Louback-Mohamed, M.; Horbelt, N.; et al. Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair. Biomimetics 2019, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; Nunes de Oliveira, P.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thire, R.; Osorio-Madrazo, A. Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers 2018, 10, 1202. [Google Scholar] [CrossRef] [Green Version]
- Grishkewich, N.; Mohammed, N.; Tang, J.T.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 2017, 29, 32–45. [Google Scholar] [CrossRef]
- Nascimento, D.M.; Nunes, Y.L.; Figueiredo, M.C.B.; de Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A. Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem. 2018, 20, 2428–2448. [Google Scholar] [CrossRef] [Green Version]
- Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018, 51, 6157–6189. [Google Scholar] [CrossRef] [Green Version]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Peng, B.L.; Dhar, N.; Liu, H.L.; Tam, K.C. Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: A Nanotechnology Perspective. Can. J. Chem. Eng. 2011, 89, 1191–1206. [Google Scholar] [CrossRef]
- Jordan, J.H.; Easson, M.W.; Thompson, S.; Wu, Q.; Condon, B.D. Lignin-containing cellulose nanofibers with gradient lignin content obtained from cotton gin motes and cotton gin trash. Cellulose 2020, 28, 757–773. [Google Scholar] [CrossRef]
- Cheng, H.N.; Dowd, M.K.; He, Z.Q. Investigation of modified cottonseed protein adhesives for wood composites. Ind. Crop. Prod. 2013, 46, 399–403. [Google Scholar] [CrossRef]
- Jordan, J.H.; Easson, M.W.; Dien, B.; Thompson, S.; Condon, B.D. Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose 2019, 26, 5959–5979. [Google Scholar] [CrossRef]
- ASTM D829-97; Standard Test Methods for Wet Tensile Breaking Strength of Paper and Paper Products. ASTM International: West Conshohocken, PA, USA, 2002. [CrossRef]
- Jordan, J.H.; Easson, M.W.; Condon, B.D. Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: Morphological comparison of nanocellulose. RSC Adv. 2020, 10, 39413–39424. [Google Scholar] [CrossRef] [PubMed]
- Villalpando, A.; Easson, M.; Cheng, H.N.; Condon, B. Use of cottonseed protein as a strength additive for nonwoven cotton. Text. Res. J. 2019, 89, 1725–1733. [Google Scholar] [CrossRef]
- Calahorra, M.E.; Cortazar, M.; Eguiazabal, J.I.; Guzman, G.M. Thermogravimetric Analysis of Cellulose—Effect of the Molecular-Weight on Thermal-Decomposition. J. Appl. Polym. Sci. 1989, 37, 3305–3314. [Google Scholar] [CrossRef]
- Ramiah, M.V. Thermogravimetric and Differential Thermal Analysis of Cellulose, Hemicellulose, and Lignin. J. Appl. Polym. Sci. 1970, 14, 1323–1337. [Google Scholar] [CrossRef]
- Henriksson, M.; Berglund, L.A.; Isaksson, P.; Lindstrom, T.; Nishino, T. Cellulose nanopaper structures of high toughness. Biomacromolecules 2008, 9, 1579–1585. [Google Scholar] [CrossRef]
Sample | Thickness (µm) * | Weight Pick-Up (%) * |
---|---|---|
Paper | 175.06 ± 9.53 | 0.3 ± 1.7 |
Paper and 10% CSP 1 | 202.12 ± 22.09 a | 28.2 ± 2.5 a |
+0.2% GM-CNF 1,2 | 204.84 ± 23.98 a | 32.0 ± 6.1 a |
+0.2% GT-CNF 2 | 207.40 ± 22.25 a | 28.9 ± 4.3 a |
+0.2% GM-LCNF 3 | 215.88 ± 23.43 a | 31.5 ± 4.3 a |
+0.2% GT-LCNF 3 | 201.12 ± 17.54 a | 30.0 ± 4.3 a |
Sample | Tonset * | Tmax * | Char * |
---|---|---|---|
CSP | 262.5 ± 0.5 | 307.2 ± 0.3 | 31.5 ± 0.4 |
Paper | 337.5 ± 0.6 | 357.1 ± 0.6 | 1.9 ± 0.1 |
Paper and 10% CSP 1 | 318.2 ± 0.6 a | 354.6 ± 1.0 a | 19.8 ± 0.7 a |
+0.2% GM-CNF 1,2 | 317.5 ± 1.1 a | 353.9 ± 1.0 a | 19.9 ± 1.0 a |
+0.2% GT-CNF 2 | 315.9 ± 1.2 a,b | 353.3 ± 0.8 a,b | 19.5 ± 0.8 a |
+0.2% GM-LCNF 3 | 315.1 ± 2.4 a,b | 352.5 ± 1.6 a,b | 19.9 ± 0.8 a |
+0.2% GT-LCNF 3 | 313.7 ± 0.4 b | 351.5 ± 0.2 b | 20.2 ± 0.4 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordan, J.H.; Easson, M.W.; Cheng, H.N.; Condon, B.D. Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers 2022, 14, 2154. https://doi.org/10.3390/polym14112154
Jordan JH, Easson MW, Cheng HN, Condon BD. Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers. 2022; 14(11):2154. https://doi.org/10.3390/polym14112154
Chicago/Turabian StyleJordan, Jacobs H., Michael W. Easson, Huai N. Cheng, and Brian D. Condon. 2022. "Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper" Polymers 14, no. 11: 2154. https://doi.org/10.3390/polym14112154
APA StyleJordan, J. H., Easson, M. W., Cheng, H. N., & Condon, B. D. (2022). Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers, 14(11), 2154. https://doi.org/10.3390/polym14112154