Wear and Service Life of 3-D Printed Polymeric Gears
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wear Model in Gears
2.2. Materials and Test Procedure
3. Results and Discussion
3.1. Theoretical Wear of Polymeric Gears
3.2. Service Life of Polymeric Gears
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nejad, Z.M.; Zamanian, A.; Saeidifar, M.; Vanaei, H.R.; Amoli, M.S. 3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior. Polymers 2021, 13, 4442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Hu, Z.; Xie, H.; Lee, G.-H.; Lee, C.-H. Friction and wear characteristics of polylactic acid (PLA) for 3D printing under reciprocating sliding condition. Ind. Lubr. Tribol. 2019, 72, 533–539. [Google Scholar] [CrossRef]
- Hanon, M.; Marczis, R.; Zsidai, L. Impact of 3D-printing structure on the tribological properties of polymers. Ind. Lubr. Tribol. 2020, 72, 811–818. [Google Scholar] [CrossRef]
- Soundararajan, R.; Jayasuriya, N.; Vishnu, R.G.; Prassad, B.G.; Pradeep, C. Appraisal of Mechanical and Tribological Properties on PA6-TiO2 Composites through Fused Deposition Modelling. Mater. Today Proc. 2019, 18, 2394–2402. [Google Scholar] [CrossRef]
- Hanon, M.M.; Alshammas, Y.; Zsidai, L. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. Int. J. Adv. Manuf. Technol. 2020, 108, 553–570. [Google Scholar] [CrossRef]
- Vanaei, H.; Khelladi, S.; Deligant, M.; Shirinbayan, M.; Tcharkhtchi, A. Numerical Prediction for Temperature Profile of Parts Manufactured using Fused Filament Fabrication. J. Manuf. Process. 2022, 76, 548–558. [Google Scholar] [CrossRef]
- Amirruddin, M.S.; Ismail, K.I.; Yap, T.C. Effect of layer thickness and raster angle on the tribological behavior of 3D printed materials. Mater. Today Proc. 2021, 48, 1821–1825. [Google Scholar] [CrossRef]
- Singh, M.; Bhartia, P.S. Parametric influence of process parameters on the wear rate of 3D printed polylactic acid specimens. Indian J. Pure Appl. Phys. 2021, 59, 244–251. [Google Scholar]
- Sivaraos; Yap, T.; Qumrul; Amran, M.; Anand, T.; Izamshah, R.; Aziz, A. Friction Performance Analysis of Waste Tire Rubber Powder Reinforced Polypropylene Using Pin-On-Disk Tribometer. Procedia Eng. 2013, 68, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. A parametric investigation of the friction performance of PC-ABS parts processed by FDM additive manufacturing process. Polym. Adv. Technol. 2017, 28, 1911–1918. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.; Bhowmik, J.L.; Somers, A. Investigation on the Tribological Behavior and Wear Mechanism of Parts Processed by Fused Deposition Additive Manufacturing process. J. Manuf. Process. 2017, 29, 149–159. [Google Scholar] [CrossRef]
- El-Tayeb, N.; Yousif, B.; Yap, T. Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface. Wear 2006, 261, 443–452. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Wang, H.; Fan, N.; Yan, F. Experimental investigation on tribological behavior of several polymer materials under reciprocating sliding and fretting wear conditions. Tribol. Int. 2016, 104, 73–82. [Google Scholar] [CrossRef]
- Dangnan, F.; Espejo, C.; Liskiewicz, T.; Gester, M.; Neville, A. Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 2020, 59, 238–247. [Google Scholar] [CrossRef]
- Srinivasan, R.; Babu, B.S.; Rani, V.U.; Suganthi, M.; Dheenasagar, R. Comparision of tribological behaviour for parts fabricated through fused deposition modelling (FDM) process on abs and 20% carbon fibre PLA. Mater. Today Proc. 2020, 27, 1780–1786. [Google Scholar] [CrossRef]
- Srinivasan, R.; Aravindkumar, N.; Krishna, S.A.; Aadhishwaran, S.; George, J. Influence of fused deposition modelling process parameters on wear strength of carbon fibre PLA. Mater. Today Proc. 2020, 27, 1794–1800. [Google Scholar] [CrossRef]
- Roy, R.; Mukhopadhyay, A. Tribological studies of 3D printed ABS and PLA plastic parts. Mater. Today Proc. 2020, 41, 856–862. [Google Scholar] [CrossRef]
- Gardner, G.D.; Dunn, W.J.; Taloumis, L. Wear comparison of thermoplastic materials used for orthodontic retainers. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 294–297. [Google Scholar] [CrossRef]
- Srinivasan, R.; Prathap, P.; Raj, A.; Kannan, S.A.; Deepak, V. Influence of fused deposition modeling process parameters on the mechanical properties of PETG parts. Mater. Today Proc. 2020, 27, 1877–1883. [Google Scholar] [CrossRef]
- Kurokawa, M.; Uchiyama, Y.; Nagai, S. Performance of plastic gear made of carbon fiber reinforced poly-ether-ether-ketone. Tribol. Int. 1999, 32, 491–497. [Google Scholar] [CrossRef]
- Kurokawa, M.; Uchiyama, Y.; Nagai, S. Performance of plastic gear made of carbon fiber reinforced poly-ether-ether-ketone: Part 2. Tribol. Int. 2000, 33, 715–721. [Google Scholar] [CrossRef]
- Kurokawa, M.; Uchiyama, Y.; Iwai, T.; Nagai, S. Performance of plastic gear made of carbon fiber reinforced polyamide 12. Wear 2003, 254, 468–473. [Google Scholar] [CrossRef]
- Singh, P.K.; Siddhartha; Singh, A.K. An Investigation on the Thermal and Wear Behavior of Polymer Based Spur Gears. Tribol. Int. 2018, 118, 264–272. [Google Scholar] [CrossRef]
- Düzcükoğlu, H. PA 66 spur gear durability improvement with tooth width modification. Mater. Des. 2009, 30, 1060–1067. [Google Scholar] [CrossRef]
- Imrek, H. Performance improvement method for Nylon 6 spur gears. Tribol. Int. 2009, 42, 503–510. [Google Scholar] [CrossRef]
- Li, X.; Sosa, M.; Olofsson, U. A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 2015, 340–341, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Kalin, M.; Kupec, A. The dominant effect of temperature on the fatigue behaviour of polymer gears. Wear 2017, 376-377, 1339–1346. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Tsai, Y.-C. A method for calculating static transmission errors of plastic spur gears using FEM evaluation. Finite Elem. Anal. Des. 1997, 27, 345–357. [Google Scholar] [CrossRef]
- Mao, K.; Li, W.; Hooke, C.; Walton, D. Friction and wear behaviour of acetal and nylon gears. Wear 2009, 267, 639–645. [Google Scholar] [CrossRef]
- Senthilvelan, S.; Gnanamoorthy, R. Influence of reinforcement on composite gear metrology. Mech. Mach. Theory 2008, 43, 1198–1209. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Gnanamoorthy, R. Gear tooth wear in sintered spur gears under dry running conditions. Wear 2008, 265, 81–87. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Gnanamoorthy, R. Abrasive wear behavior of sintered steels prepared with MoS2 addition. Wear 2007, 262, 617–623. [Google Scholar] [CrossRef]
- Letzelter, E.; de Vaujany, J.-P.; Chazeau, L.; Guingand, M. Quasi-static load sharing model in the case of Nylon 6/6 cylindrical gears. Mater. Des. 2009, 30, 4360–4368. [Google Scholar] [CrossRef]
- Kotkar, M.; Masure, P.; Modake, P.; Lad, C.; Patil, B. Modelling and testing of spur gear made of different 3D printed materials. Int. JS Res. Sci. Eng. 2018, 4, 1389–1394. [Google Scholar]
- Rohit, A.; Sasank, G.S.; Kishore, P.V.R.C. Design and fabrication of spur gear using 3D printing technology. IRJET 2020, 7, 454–464. [Google Scholar]
- Zhang, Y.; Purssell, C.; Mao, K.; Leigh, S. A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribol. Int. 2019, 141, 105953. [Google Scholar] [CrossRef]
- Dimić, A.; Mišković, Z.; Mitrović, R.; Ristivojević, M.; Stamenić, Z.; Danko, J.; Bucha, J.; Milesich, T. The Influence of Material on the Operational Characteristics of Spur Gears Manufactured by the 3D Printing Technology. J. Mech. Eng. 2018, 68, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, V.S.; Wankhade, S.R. Design and manufacturing of spur gear using fused deposition modeling. IRJET 2017, 4, 1217–1224. [Google Scholar]
- Avula, Y.; Reddy, V.R.N.; Swaroop, V. Modelling and 3D Printing of Differential Gear Box. Int. J. Trend Sci. Res. Dev. 2019, 3, 1163–1167. [Google Scholar] [CrossRef] [Green Version]
- Dennig, H.-J.; Zumofen, L.; Kirchheim, A. Feasibility Investigation of Gears Manufactured by Fused Filament Fabrication. In Industrializing Additive Manufacturing; Meboldt, M., Klahn, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 304–320. [Google Scholar] [CrossRef]
- Gbadeyan, O.J.; Mohan, T.P.; Kanny, K. Processing and characterization of 3D-printed nanoclay/acrylonitrile butadiene styrene (abs) nanocomposite gear. Int. J. Adv. Manuf. Technol. 2020, 109, 619–627. [Google Scholar] [CrossRef]
- Harsha, K.; Rao, Y.S.; Rao, D.J. Comparison of wear behaviour of polymer spur gears using FDM process. IOP Conf. Series Mater. Sci. Eng. 2021, 1168, 012028. [Google Scholar] [CrossRef]
- Fekete, G. Numerical Wear Analysis of a PLA-Made Spur Gear Pair as a Function of Friction Coefficient and Temperature. Coatings 2021, 11, 409. [Google Scholar] [CrossRef]
- Tunalioglu, M.S.; Torun, T. The investigation of wear on three-dimensional printed spur gears. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2021, 235, 2027–2034. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Flodin, A.; Andersson, S. Simulation of mild wear in spur gears. Wear 1997, 207, 16–23. [Google Scholar] [CrossRef]
- Flodin, A. Wear of Spur and Helical Gears. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
Material and Test Method | Test Method | PLA | ABS | PETG |
---|---|---|---|---|
Density (g/cm3) | - | 1.2 | 1.06 | 1.27 |
Tensile Strength (MPa) | ISO 527 | 62 | 40 | 50 |
Hardness (Shore D) | ISO 868 | 71 | 82 | 79.2 |
Poisson’s Ratio | - | 0.35 | 0.35 | 0.43 |
Elongation at Break (%) | ISO 527 | 21.8 | 30 | 110 |
Shear Modulus (GPa) | ISO 527 | 2.4 | 0.88 | 4.6 |
Heat Deflection Temperature (°C) | ISO 75 | 53 | 73 | 70 |
Heat Deflection Temperature (J/kg-K) | ISO 75 | 1800 | 2000 | 1500 |
Thermal Conductivity (W/m-K) | ASTM C1045 | 0.13 | 0.17 | 0.21 |
Glass Transition Temperature (°C) | ISO 11357 | 60 | 105 | 80 |
Material | PLA | ABS | PETG |
---|---|---|---|
Nozzle diameter (mm) | 0.4 | 0.4 | 0.4 |
Filament diameter (mm) | 2.85 | 2.85 | 2.85 |
Layer height (mm) | 0.2 | 0.2 | 0.2 |
First layer height (mm) | 0,19 | 0.19 | 0.19 |
Shells (mm) | 4 | 4 | 4 |
Infill density (%) | 100 | 100 | 100 |
Fill pattern | Rectilinear | Rectilinear | Rectilinear |
Extruder temperature (°C) | 210 | 245 | 246 |
Bed temperature (°C) | 60 | 85 | 70 |
Printing speed (mm/s) | 60 | 60.1 | 60.1 |
Materials | PLA-ABS-PETG | St37-2 |
---|---|---|
Pinion | Gear | |
Modulus of elasticity (MPa) | 3500 | 210,000 |
Module | 6 | |
Number of teeth | 17 | 22 |
Pressure angle (deg.) | 20 | |
Profile shift correction | 0 | |
Dia. of pitch circle (mm) | 102 | 132 |
Dia. of tip circle (mm) | 114 | 144 |
Tooth width (mm) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunalioglu, M.S.; Agca, B.V. Wear and Service Life of 3-D Printed Polymeric Gears. Polymers 2022, 14, 2064. https://doi.org/10.3390/polym14102064
Tunalioglu MS, Agca BV. Wear and Service Life of 3-D Printed Polymeric Gears. Polymers. 2022; 14(10):2064. https://doi.org/10.3390/polym14102064
Chicago/Turabian StyleTunalioglu, Mert Safak, and Bekir Volkan Agca. 2022. "Wear and Service Life of 3-D Printed Polymeric Gears" Polymers 14, no. 10: 2064. https://doi.org/10.3390/polym14102064
APA StyleTunalioglu, M. S., & Agca, B. V. (2022). Wear and Service Life of 3-D Printed Polymeric Gears. Polymers, 14(10), 2064. https://doi.org/10.3390/polym14102064