The Effect of Extrinsic Factors on the Mechanical Behavior and Structure of Elastic Dental Ligatures and Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tensile Tests
2.2. Force Degradation Measurement
2.3. Experimental Protocol for Measuring Force Degradation Due to Extrinsic Factors
2.4. Force Degradation Measurement Due to Extrinsic Factors
2.5. Scanning Electron Microscopy Imaging
2.6. Statistics
3. Results
3.1. Tensile Test
3.2. 24 h Interval Force Degradation Measurement of Intact, Untreated Elastomers in a Thermostatic Chamber
3.3. Force Degradation of Dentaurum and Masel Elastic Ligatures Exposed to Extrinsic Factors
3.4. Force Degradation of Ortho Organizer and Masel Elastic Chains Exposed to Extrinsic Factors
3.5. Scanning Electron Microscopy Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iwasaki, L.R.; Haack, J.E.; Nickel, J.C.; Morton, J. Human tooth movement in response to continuous stress of low magnitude. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 175–183. [Google Scholar] [CrossRef]
- Proffit, W.; Fields, H.; Larson, B.; Sarver, D. Contemporary Orthodontics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780323543873. [Google Scholar]
- Halimi, A.; Benyahia, H.; Doukkali, A.; Azeroual, M.-F.; Zaoui, F. A systematic review of force decay in orthodontic elastomeric power chains. Int. Orthod. 2012, 10, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.M.; English, J.D.; Paige, S.Z.; Powers, J.M.; Bussa, H.I.; Lee, R.P. Force relaxation between latex and non-latex orthodontic elastics in simulated saliva solution. Tex. Dent. J. 2009, 126, 981–985. [Google Scholar] [PubMed]
- López, N.; Vicente, A.; Bravo, L.A.; Calvo, J.L.; Canteras, M. In vitro study of force decay of latex and non-latex orthodontic elastics. Eur. J. Orthod. 2012, 34, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Ardani, I.G.A.W.; Susanti, B.; Djaharu’ddin, I. Force degradation trend of latex and nonlatex orthodontic elastics after 48 hours stretching. Clin. Cosmet. Investig. Dent. 2018, 10, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Pithon, M.M.; Mendes, J.L.; da Silva, C.A.; dos Santos, R.L.; da Silva Conqueiro, R. Force decay of latex and non-latex intermaxillary elastics: A clinical study. Eur. J. Orthod. 2016, 38, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qodcieh, S.M.A.; Al-Khateeb, S.N.; Jaradat, Z.W.; Alhaija, E.S.J.A. Force degradation of orthodontic latex elastics: An in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Phukaoluan, A.; Khantachawana, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Tunthawiroon, P.; Srirussamee, K. Influence of Mouthwash Rinsing on the Mechanical Properties of Polymeric Ligature Ties Used for Dental Applications. Polymers 2021, 13, 2236. [Google Scholar] [CrossRef]
- Quenzer, J.P.; Lucato, A.S.; Vedovello, S.A.S.; Valdrighi, H.C.; Filho, M.V. Influence of elastic chain in the degradation of orthodontic forces—In vitro study. Rev. Odontol. 2015, 44, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Chauncey, H.H.; Boston, M. Salivary enzymes. J. Am. Dent. Assoc. 1961, 63, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater. 2014, 30, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Labow, R.S.; Meek, E.; Matheson, L.A.; Santerre, J.P. Human macrophage-mediated biodegradation of polyurethanes: Assessment of candidate enzyme activities. Biomaterials 2002, 23, 3969–3975. [Google Scholar] [CrossRef]
- Labow, R.S.; Meek, E. Synthesis of cholesterol esterase by monocyte-derived macrophages: A potential role in the biodegradation of poly(urethanes)s. J. Biomater. Appl. 1999, 13, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Eliades, G.; Silikas, N.; Watts, D.C. Tensile properties of orthodontic elastomeric chains. Eur. J. Orthod. 2004, 26, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huget, E.F.; Patrick, K.S.; Nunez, L.J. Observations on the Elastic Behavior of a Synthetic Orthodontic Elastomer. J. Dent. Res. 1990, 69, 496–501. [Google Scholar] [CrossRef]
- Kanchana, P.; Godfrey, K. Calibration of force extension and force degradation characteristics of orthodontic latex elastics. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 280–287. [Google Scholar] [CrossRef]
- Ferriter, J.P.; Meyers, C.E.; Lorton, L. The effect of hydrogen ion concentration on the force-degradation rate of orthodontic polyurethane chain elastics. Am. J. Orthod. Dentofac. Orthop. 1990, 98, 404–410. [Google Scholar] [CrossRef]
- dos Santos, R.L.; Pithon, M.M.; Martins, F.O.; Romanos, M.T.V.; de Oliveira Ruellas, A.C. Cytotoxicity of Latex and Non-Latex Orthodontic Elastomeric Ligatures on L929 Mouse Fibroblasts. Braz. Dent. J. 2010, 21, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.L.E.; Matsumoto, M.A.N.; Faria, G.; Romano, F.L. Degradation and deformation of latex and non-latex orthodontic elastics. Australas. Orthod. J. 2017, 33, 64–72. [Google Scholar] [CrossRef]
- Gandini, P.; Gennai, R.; Bertoncini, C.; Massironi, S. Experimental evaluation of latex-free orthodontic elastics’ behaviour in dynamics. Prog. Orthop. 2007, 8, 88–99. [Google Scholar]
- Al-Kassar, S.S. The Force Degradation of Elastic Chain in Different Environments and for Different Intervals (An In Vitro Study). Al-Rafidain Dent. J. 2011, 11, 231–237. [Google Scholar] [CrossRef]
- Krishnan, M.; Semma, S.; Sukumaran, K.; Abraham, K.M. Correlation between in vitro Elastomeric Force Degradation and Glass Transition Temperature determined by Dynamic Mechanical Analysis. J. Indian Orthod. Soc. 2012, 46, 193–198. [Google Scholar] [CrossRef]
- Larrabee, T.M.; Liu, S.S.-Y.; Torres-Gorena, A.; Soto-Rojas, A.; Eckert, G.J.; Stewart, K.T. The effects of varying alcohol concentrations commonly found in mouth rinses on the force decay of elastomeric chain. Angle Orthod. 2012, 82, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Sauget, P.S.; Stewart, K.T.; Katona, T.R. The effect of pH levels on nonlatex vs. latex interarch elastics. Angle Orthod. 2011, 81, 1070–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, R.S.; Yoshikawa, D.K. A reassessment of force magnitude in orthodontics. Am. J. Orthod. 1985, 88, 252–260. [Google Scholar] [CrossRef]
- Boester, C.H.; Johnston, L.E. A clinical investigation of the concepts of differential and optimal force in canine retraction. Angle Orthod. 1974, 44, 113–119. [Google Scholar]
- Evans, K.S.; Wood, C.M.; Moffitt, A.H.; Colgan, J.A.; Holman, J.K.; Marshall, S.D.; Pope, D.S.; Sample, L.B.; Sherman, S.L.; Sinclair, P.M.; et al. Sixteen-week analysis of unaltered elastomeric chain relating in-vitro force degradation with in-vivo extraction space tooth movement. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Santana, W.; Thahar, B.; Mardiati, E.; Salim, J. The effect of alcohol-containing mouthwash and alcohol-free mouthwash towards the power chains force decay. Padjadjaran J. Dent. 2017, 29, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H.A.; Settle, S. The rise in latex allergy: Implications for the dentist. J. Am. Dent. Assoc. 1994, 125, 1089–1097. [Google Scholar] [CrossRef]
- Martínez-Colomer, S.; Gaton-Hernández, P.; Romano, F.L.; De Rossi, A.; Fukada, S.Y.; Nelson-Filho, P.; Consolaro, A.; Silva, R.A.B.; Silva, L.A.B. Latex and nonlatex orthodontic elastics: In vitro and in vivo evaluations of tissue compatibility and surface structure. Angle Orthod. 2016, 86, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Nattrass, C.; Ireland, A.J.; Lovell, C.R. Latex allergy in an orthognathic patient and implications for clinical management. Br. J. Oral Maxillofac. Surg. 1999, 37, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Russel, K.A.; Milne, A.D.; Khanna, R.A.; Lee, J.M. In vitro assessment of the mechanical properties of latex and non-latex orthodontic elastics. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 36–44. [Google Scholar] [CrossRef]
- Ogaard, B. White Spot Lesions during Orthodontic Treatment: Mechanisms and Fluoride Preventive Aspects. Semin. Orthod. 2008, 14, 183–193. [Google Scholar] [CrossRef]
- Bishara, S.E.; Andreasen, G.F. A comparison of time related forces between plastic alastiks and latex elastics. Angle Orthod. 1970, 40, 319–328. [Google Scholar]
- Arnold, W.H.; Dorow, A.; Langenhorst, S.; Gintner, Z.; Bánóczy, J.; Gaengler, P. Effect of fluoride toothpastes on enamel demineralization. BMC Oral Health 2006, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, P.G.; Prendergast, M.; Strand, R.; Yu, Z.; Day, T.N.; Barker, M.L.; Mussett, A.J. Can anti-erosion dentifrices also provide effective plaque control? Int. J. Dent. Hyg. 2011, 9, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Junevicius, J.; Žilinskas, J.; Česaitis, K.; Česaitiené, G.; Gleiznys, D.; Mazeliené, Z. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis. Stomatol. Balt. Maxillofac. J. 2015, 17, 9–12. [Google Scholar]
- Gunsolley, J.C. Clinical efficacy of antimicrobial mouthrinses. J. Dent. 2010, 38, S6–S10. [Google Scholar] [CrossRef]
- Van Gastel, J.; Quirynen, M.; Teughels, W.; Coucke, W.; Carels, C. Longitudinal Changes in Microbiology and Clinical Periodontal Variables after Orthodontic Appliances. J. Periodontol. 2008, 79, 2078–2086. [Google Scholar] [CrossRef]
- Mirhashemi, A.; Farahmand, N.; Shahroudi, A.S.; Akhoundi, M.S.A. Effect of four different mouthwashes on force-degradation pattern of orthodontic elastomeric chains. Orthod. Waves 2017, 76, 62–72. [Google Scholar] [CrossRef]
(cN) | σF (cN) | (mm) | σEM (mm) | |
---|---|---|---|---|
Dentaurum elastic ligature | 3660.4 | 167.3 | 241.5 | 7.8 |
Masel elastic ligature | 2339.1 | 465.0 | 182.5 | 4.9 |
Ortho organizer elastic chain | 2639.6 | 150.4 | 74.18 | 2.38 |
Masel elastic chain | 1324.6 | 72.9 | 66.79 | 3.48 |
Measured Data | Calculated Data | t-Test | |||
---|---|---|---|---|---|
(cN) | σ24h (cN) | (cN) | σ21day (cN) | p Value | |
Dentaurum elastic ligature | 171.73 | 2.5 | 109.8 | 36.8 | 0.10 * |
Masel elastic ligature | 176.1 | 17.25 | - | - | - |
Ortho organiser elastic chain | 198.53 | 3.05 | 191.8 | 4.22 | 0.089 ** |
Masel elastic chain | 197.42 | 2.28 | 187.47 | 1.62 | 0.0036 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csekő, K.; Maróti, P.; Helyes, Z.; Told, R.; Riegler, F.; Szalma, J.; Gurdán, Z. The Effect of Extrinsic Factors on the Mechanical Behavior and Structure of Elastic Dental Ligatures and Chains. Polymers 2022, 14, 38. https://doi.org/10.3390/polym14010038
Csekő K, Maróti P, Helyes Z, Told R, Riegler F, Szalma J, Gurdán Z. The Effect of Extrinsic Factors on the Mechanical Behavior and Structure of Elastic Dental Ligatures and Chains. Polymers. 2022; 14(1):38. https://doi.org/10.3390/polym14010038
Chicago/Turabian StyleCsekő, Kata, Péter Maróti, Zsuzsanna Helyes, Roland Told, Fanni Riegler, József Szalma, and Zsuzsanna Gurdán. 2022. "The Effect of Extrinsic Factors on the Mechanical Behavior and Structure of Elastic Dental Ligatures and Chains" Polymers 14, no. 1: 38. https://doi.org/10.3390/polym14010038
APA StyleCsekő, K., Maróti, P., Helyes, Z., Told, R., Riegler, F., Szalma, J., & Gurdán, Z. (2022). The Effect of Extrinsic Factors on the Mechanical Behavior and Structure of Elastic Dental Ligatures and Chains. Polymers, 14(1), 38. https://doi.org/10.3390/polym14010038