Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes
3.2. Preparation of Poly(diethyl)(dimethyl)siloxane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, X.; Chen, Z.; Liu, J.; Chen, Q.; Liu, Q.; Luo, M.; Lai, G. A convenient method for preparation of hydroxyl silicone oils with ring opening polymerization of octamethylcyclotetrasiloxane (D4). Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 117–122. [Google Scholar] [CrossRef]
- Barnes, Q.; Longuet, C.; Ganachaud, F. Cationic Polymerization of Hexamethylcyclotrisiloxane in Excess Water. Molecules 2021, 26, 4402. [Google Scholar] [CrossRef]
- Fuchise, K.; Sato, K.; Igarashi, M. Precise Synthesis of Side-Chain-Functionalized Linear Polysiloxanes by Organocatalytic Ring-Opening Polymerization of Monofunctional Cyclotrisiloxanes. Macromolecules 2021, 54, 5204–5217. [Google Scholar] [CrossRef]
- Goff, J.; Sulaiman, S.; Arkles, B. Applications of Hybrid Polymers Generated from Living Anionic Ring Opening Polymerization. Molecules 2021, 26, 2755. [Google Scholar] [CrossRef]
- Katarzhnova, E.Y.; Ignatyeva, G.M.; Kalinina, A.A.; Talalaeva, E.V.; Tereshchenko, A.S. Synthesis and properties of hybrid carbosilane dendrimers with cyclosiloxane external shells. INEOS OPEN 2020, 3, 219–225. [Google Scholar] [CrossRef]
- Migulin, D.; Vysochinskaya, Y.; Buzin, M.; Bakirov, A.; Cherkaev, G.; Shchegolikhina, O. Stereoregular hybrid azobenzene-cyclosiloxanes with photoinduced reversible solid to liquid transition properties. J. Photochem. Photobiol. A Chem. 2021, 407, 113033. [Google Scholar] [CrossRef]
- Vysochinskaya, Y.S.; Anisimov, A.A.; Peregudov, A.S.; Dubovik, A.S.; Orlov, V.N.; Malakhova, Y.N.; Stupnikov, A.A.; Buzin, M.I.; Nikiforova, G.G.; Vasil’ev, V.G.; et al. Star-shaped siloxane polymers with various cyclic cores: Synthesis and properties. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1233–1246. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Kononevich, Y.N.; Buzin, M.I.; Peregudov, A.S.; Shchegolikhina, O.I.; Muzafarov, A.M. Convenient synthesis of new Si-H and Si-Vinyl functionalized stereospecific 8-, 12-and 24-membered cyclosiloxanes. Macroheterocycles 2016, 9, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Akkus, B.; Gao, Y.; Liu, Y.; Yamamoto, S.; Matsui, J.; Mitsuishi, M. Regioselective synthesis of eight-armed cyclosiloxane amphiphile for functional 2D and 3D assembly motifs. ACS Appl. Mater. Interfaces 2017, 9, 28144–28150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Wei, X.; Peng, Q.; Fan, L.; Li, X.; Hu, H.; Yang, J. Silacyclobutane-functionalized cyclosiloxanes as photoactive precursors for high thermal stability, low dielectric constant and low dielectric loss polymers. J. Appl. Polym. Sci. 2021, 138, 51376. [Google Scholar] [CrossRef]
- Kong, D.; Liu, J.; Zhang, Z.; Wang, S.; Lu, Z. Preparation of synergistic silicon, phosphorus and nitrogen flame retardant based on cyclosiloxane and its application to cotton fabric. Cellulose 2021, 28, 8115–8128. [Google Scholar] [CrossRef]
- Hasenclever, K.D. Verwendung von Polydialkylcyclosiloxanen als Loesemittel Fuer die Chemischreinigung. Patent of Germany DE3739711, 8 June 1989. [Google Scholar]
- Gaidau, C.; Martinescu, T.; Simion, D.; Mocioiu, A.M.; Sendrea, C.; Fleancu, M.; Niculescu, M. Study on Dry Cleaning with Decamethylcyclopentasiloxane as Ecological Alternative for Leathers and Furskins. Rev. Chim. 2014, 65, 411–415. [Google Scholar]
- Liu, J. Composite of Dry Cleaning Solvent. Patent of China CN101735906, 16 June 2010. [Google Scholar]
- Lee, C.H.; Tang, Y.L.; Wang, Y.; Kan, C.W. Dyeing of Cotton Fabric in Decamethylcyclopentasiloxane Using Alkyl Polyglucoside-based Reverse Micelle as Reactive Dye Carrier. Fibers Polym. 2021, 1–12. [Google Scholar] [CrossRef]
- Pei, L.; Liu, J.; Cai, G.; Wang, J. Study of hydrolytic kinetics of vinyl sulfone reactive dye in siloxane reverse micro-emulsion. Text. Res. J. 2017, 87, 2368–2378. [Google Scholar] [CrossRef]
- Liu, J.Q.; Miao, H.L.; Li, S.Z. Non-aqueous dyeing of reactive dyes in D5. Adv. Mater. Res. 2012, 441, 138–144. [Google Scholar] [CrossRef]
- Fan, J.; Shao, M.; Miao, J.; Ma, J.; Hu, M.; An, Y.; Shao, J. Thermodynamic properties of cotton dyeing with indigo dyes in non-aqueous media of liquid paraffin and D5. Text. Res. J. 2021, 91, 2692–2704. [Google Scholar] [CrossRef]
- Loretz, L.J.; Api, A.M.; Babcock, L.; Barraj, L.M.; Burdick, J.; Cater, K.C.; Jarrett, G.; Mann, S.; Pan, Y.H.L.; Re, T.A.; et al. Exposure data for cosmetic products: Facial cleanser, hair conditioner, and eye shadow. Food Chem. Toxicol. 2008, 46, 1516–1524. [Google Scholar] [CrossRef]
- Loretz, L.J.; Api, A.M.; Barraj, L.M.; Burdick, J.; Dressler, W.E.; Gettings, S.D.; Hsu, H.H.; Pan, Y.H.L.; Re, T.A.; Renskers, K.J.; et al. Exposure data for cosmetic products: Lipstick, body lotion, and face cream. Food Chem. Toxicol. 2005, 43, 279–291. [Google Scholar] [CrossRef]
- Loretz, L.; Api, A.M.; Barraj, L.; Burdick, J.; Davis, D.A.; Dressler, W.; Gilberti, E.; Jarrett, G.; Mann, S.; Pen, Y.H.L.; et al. Exposure data for personal care products: Hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid antiperspirant. Food Chem. Toxicol. 2006, 44, 2008–2018. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, L. Anti-Wrinkle Cosmetic Composition and Preparation Method Thereof. Patent of China CN112220703, 15 January 2021. [Google Scholar]
- Nasu, A.; Otsubo, Y. Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil. J. Colloid Interface Sci. 2006, 296, 558–564. [Google Scholar] [CrossRef]
- Deshpande, G.; Rezac, M.E. The effect of phenyl content on the degradation of poly (dimethyl diphenyl) siloxane copolymers. Polym. Degrad. Stab. 2001, 74, 363–370. [Google Scholar] [CrossRef]
- Madsen, P.J.; Yu, L.; Boucher, S.; Skov, A.L. Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly (dimethylsiloxane-co-methylphenylsiloxane) copolymers. RSC Adv. 2018, 8, 23077–23088. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, D.; Wu, L.; Fan, H.; Wang, D.; Li, B.G. Ring-Opening Copolymerization of Mixed Cyclic Monomers: A Facile, Versatile and Structure-Controllable Approach to Preparing Poly (methylphenylsiloxane) with Enhanced Thermal Stability. Ind. Eng. Chem. Res. 2017, 56, 7120–7130. [Google Scholar] [CrossRef]
- Jha, P.; Way, J.D. Concentration and temperature dependence on diffusivities of CO2 and N2 for poly (dimethyl, methylphenyl siloxane). AIChE J. 2008, 54, 143–149. [Google Scholar] [CrossRef]
- Rodchenko, S.; Amirova, A.; Milenin, S.; Ryzhkov, A.; Talalaeva, E.; Kalinina, A.; Kurlykin, M.; Tenkovtsev, A.; Filippov, A. Amphiphilic molecular brushes with regular polydimethylsiloxane backbone and poly-2-isopropyl-2-oxazoline side chains. 1. Synthesis, characterization and conformation in solution. Eur. Polym. J. 2020, 140, 110035. [Google Scholar] [CrossRef]
- Gorodov, V.V.; Milenin, S.A.; Demchenko, N.V.; Muzafarov, A.M. Carboxyl-containing polydimethylsiloxanes: Synthesis and properties. INEOS OPEN 2020, 3, 43–54. [Google Scholar] [CrossRef]
- Babu, G.N.; Christopher, S.S.; Newmark, R.A. Poly(dimethylsiloxane-co-diphenylsiloxanes): Synthesis, characterization, and sequence analysis. Macromolecules 1987, 20, 2654–2659. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Zavin, B.G.; Sablina, G.F. Anionic copolymerization of octamethyl and octaphenylcyclotetrasiloxanes. Polym. Sci. USSR 1972, 14, 1294–1302. [Google Scholar] [CrossRef]
- Ziemelis, M.J.; Saam, J.C. Sequence distribution in poly(dimethyl-siloxane-co-methylvinylsiloxanes). Macromolecules 1989, 22, 2111–2116. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Khananashvili, L.M.; Konopchenko, Y.F. Synthesis of eight-membered mixed organocyclosiloxanes and their polymerization. Polym. Sci. USSR 1960, 2, 719–727. [Google Scholar]
- Andrianov, K.A.; Yakushkina, S.Y.; Guniava, L.N. Polymerization of mixed diphenyldimethylcyclosiloxanes. Polym. Sci. USSR 1966, 8, 2398–2404. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Yakushkina, S.E. Synthesis of cyclic polyorganosiloxanes containing various groups in the ring. Bull. Acad. Sci. USSR Div. Chem. Sci. 1960, 9, 425–427. [Google Scholar] [CrossRef]
- Juengst, C.D.; Weber, W.P.; Manuel, G. Synthesis of spirocyclosiloxanes by flash vacuum pyrolysis of 2, 7-dimethyl-2, 3: 7, 8-diepoxy-5-silaspiro [4.4] nonane and cyclosiloxanes. J. Organomet. Chem. 1986, 308, 187–194. [Google Scholar] [CrossRef]
- Chrusciel, J.; Lasocki, Z. Dehydrocondensation of organic hydrosilanes with silanols. 1. Kinetics and mechanism of the reaction in dimethylformamide. Pol. J. Chem. 1983, 57, 113–120. [Google Scholar]
- Yu, J.; Liu, Y. Cyclic polysiloxanes with linked cyclotetrasiloxane subunits. Angew. Chem. Int. Ed. 2017, 56, 8706–8710. [Google Scholar] [CrossRef]
- Makarova, N.N.; Astapova, T.V.; Lavrukhin, B.D. Synthesis of organosiloxanes with reactive groups at silicon atoms. Russ. Chem. Bull. 1996, 45, 914–919. [Google Scholar] [CrossRef]
- Unno, M.; Tanaka, R. Silanols and silsesquioxanes. In Efficient Methods for Preparing Silicon Compounds; Academic Press: Cambridge, MA, USA, 2016; pp. 399–440. [Google Scholar]
- Mitsudome, T.; Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported Silver-Nanoparticle-Catalyzed Highly Efficient Aqueous Oxidation of Phenylsilanes to Silanols. Angew. Chem. 2008, 120, 8056–8058. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Jiang, Y.; Zhang, M.; Wang, C.; Xue, D.; Li, C. Selective Manganese-Catalyzed Oxidation of Hydrosilanes to Silanols under Neutral Reaction Conditions. Angew. Chem. 2019, 131, 6446–6450. [Google Scholar] [CrossRef]
- Schamschurin, A.; Uhrig, D.; Fisher, M.; Clarke, S.; Matisons, J. The synthesis and characterisation of novel dimethyl-and diphenyl-silanediolates. Silicon Chem. 2008, 3, 313–325. [Google Scholar] [CrossRef]
- Urayama, T.; Mitsudome, T.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. O2-enhanced catalytic activity of gold nanoparticles in selective oxidation of hydrosilanes to silanols. Chem. Lett. 2015, 44, 1062–1064. [Google Scholar] [CrossRef]
- Teng, C.J.; Weber, W.P.; Cai, G. Anionic and cationic ring-opening polymerization of 2, 2, 4, 4, 6, 6-hexamethyl-8, 8-divinylcyclotetrasiloxane. Macromolecules 2003, 36, 5126–5130. [Google Scholar] [CrossRef]
- Andrianov, K.A.; Astakhin, V.V.; Pyzhov, V.K. Synthesis and properties of α, ω-dihydroxydimethylsiloxanes. Bull. Acad. Sci. USSR Div. Chem. Sci. 1962, 11, 2144–2146. [Google Scholar] [CrossRef]
- Hafner, T.; Torvisco, A.; Uhlig, F. Building blocks for oligomeric siloxanes–selective chlorination of hydrido-siloxanes. J. Organomet. Chem. 2018, 875, 1–4. [Google Scholar] [CrossRef]
- Basenko, S.V.; Maylyan, A.A.; Soldatenko, A.S. New Approach to the Synthesis of Symmetrical 1,3-Dichloro-1,1,3,3-Tetraorganyl-and 1,1,3,3-Tetrachloro-1,3-Diorganyldisiloxanes. Silicon 2018, 10, 465–470. [Google Scholar] [CrossRef]
- Talalaeva, E.V.; Kalinina, A.A.; Vasilenko, N.G.; Demchenko, N.V.; Cherkaev, G.V.; Goloveshkin, A.S.; Muzafarov, A.M. Selective formation of 1,5-disodiumoxyhexamethyltrisiloxane in the reaction of dimethylsiloxanes and sodium hydroxide. J. Organomet. Chem. 2020, 906, 121050. [Google Scholar] [CrossRef]
- Armarego, W.L.; Perrin, D.D. Purification of Laboratory Chemicals; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Molenberg, A.; Siffrin, S.; Möller, M.; Boileau, S.; Teyssié, D. Well defined columnar liquid crystalline polydiethylsiloxane. Macromol. Symp. 1996, 102, 199–207. [Google Scholar] [CrossRef]
- Zavin, B.G.; Rabkina, A.; Kuteinikova, L.I.; Blagodatskikh, I.V.; Dubovik, I.I. Anionic polymerization of diethylcyclosiloxanes: Formation of linear oligodiethylsiloxanes and their phase transitions. Polym. Sci. 1995, 37, 355–362. [Google Scholar]
- Filimonova, L.V.; Makarova, L.I.; Voronina, A.A.; Strelkova, T.V.; Barakovskaya, I.G.; Zavin, B.G.; Papkov, V.S. Polymerization of hexaethylcyclotrisiloxane during the synthesis of carbofunctional oligo (diethylsiloxane diols). Polym. Sci. Ser. B 2013, 55, 266–270. [Google Scholar] [CrossRef]
№ | Target Cyclotetrasiloxane | Sequence of Reagent Addition | Characteristics of Products | Preparative Yield of Cycle, % | ||||
---|---|---|---|---|---|---|---|---|
The Yield of Target Cycle in Volatile Products by GLC, % | GPC Data | |||||||
Low-Molecular-Weight Part | High-Molecular-Weight Part | |||||||
% | Mp | % | Mp | |||||
1 | | Cl→ONa 1 | 85 | 50 | 500 | 50 | 3700 | 55 |
2 | Cl║ONa 2 | 75 | 55 | 500 | 45 | 1000 | 45 | |
3 | | Cl→ONa | 86 | 40 | 500 | 60 | 5000 | 45 |
4 | | Cl→ONa | 98 | 60 | 700 | 40 | 2100 | 65 |
5 | | Cl→ONa | 99 | 80 | 700 | 20 | 1800 | 67 |
6 | | Cl→ONa | 97 | 70 | 700 | 30 | 900 | 70 |
№ | Target Cyclotetrasiloxane | Sequence of Reagent Addition | Characteristics of Products | Preparative Yield of Cycle, % | ||||
---|---|---|---|---|---|---|---|---|
The Yield of Target Cycle in Volatile Products by GLC, % | GPC Data | |||||||
Low-Molecular-Weight Part | High-Molecular-Weight Part | |||||||
% | Mp | % | Mp | |||||
7 | | Cl→ONa | 85 | 90 | 500 | 10 | 800 | 75 |
8 | ONa→Cl 3 | 83 | 80 | 500 | 20 | 1000 | 70 | |
9 | | Cl→ONa | 97 | 40 | 500 | 60 | 2400 | 55 |
10 | | Cl→ONa | 80 | 30 | 700 | 70 | 1900 | 30 |
11 | | Cl→ONa | 80 | 70 | 700 | 30 | 1200 | 40 |
12 | | Cl→ONa | 90 | 60 | 700 | 40 | 900 | 38 |
№ | Monomer Ratio, mol/mol | KOH 1, mol | Mn Theor. | Molecular Weight Characteristics of the Product (GPC) | Et2SiO/ Me2SiO, mol/mol | Tg/Tc, °C | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
% Low-Molecular-Weight Part | % High-Molecular-Weight Part | Mw | Mn | Mw/Mn | Calc. | NMR | |||||
1 | 1/1 | 0.032 | 11,000 | 80 | 20 | 16,200 | 8300 | 1.9 | 1/1 | 1/5.4 | unchanged |
2 | 1/1 | 0.032 | 10,000 | 40 | 60 | 68,200 | 30,300 | 2.3 | 1/7 | 1/6.0 | −131/− |
3 | | 0.20 | 1700 | 17 | 83 | 195,000 | 1400 | 140 | 1/3 | 1/3.3 | −132/− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talalaeva, E.V.; Kalinina, A.A.; Chernov, E.V.; Khmelnitskaia, A.G.; Obrezkova, M.A.; Cherkaev, G.V.; Muzafarov, A.M. Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers. Polymers 2022, 14, 28. https://doi.org/10.3390/polym14010028
Talalaeva EV, Kalinina AA, Chernov EV, Khmelnitskaia AG, Obrezkova MA, Cherkaev GV, Muzafarov AM. Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers. Polymers. 2022; 14(1):28. https://doi.org/10.3390/polym14010028
Chicago/Turabian StyleTalalaeva, Evgeniya V., Aleksandra A. Kalinina, Evgeniy V. Chernov, Alina G. Khmelnitskaia, Marina A. Obrezkova, Georgii V. Cherkaev, and Aziz M. Muzafarov. 2022. "Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers" Polymers 14, no. 1: 28. https://doi.org/10.3390/polym14010028
APA StyleTalalaeva, E. V., Kalinina, A. A., Chernov, E. V., Khmelnitskaia, A. G., Obrezkova, M. A., Cherkaev, G. V., & Muzafarov, A. M. (2022). Synthesis of 1,1,3,3,5,5-Hexamethyl-7,7-diorganocyclotetrasiloxanes and Its Copolymers. Polymers, 14(1), 28. https://doi.org/10.3390/polym14010028