2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Synthesis of BisEDOT Monomer
2.3. C60-Based 2D Electrodes Fabrication
2.4. PEDOT-Co-Poly(bisEDOT)/CNT 3D Electrodes Fabrication
2.5. Cyclic Voltammetry
3. Results and Discussion
3.1. 2D Electrodeposition: Immobilization of C60 in PEDOT Thin Films
3.1.1. Electrochemical Characterization of the PEDOT/Fullerene Thin Films
3.1.2. Electrochromic Analyses
3.1.3. 2D Topography of the BisP/C60 Films
3.2. 3D Electrodeposition: Immobilization of Carbon Nanotubes in PEDOT Porous Scaffolds
3.2.1. Chemical and Electrochemical Characterization of the Thin Films
3.2.2. Morphology of the 3D Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yu, X.Y.; Lou, X.W.D. The Design and Synthesis of Hollow Micro-/Nanostructures: Present and Future Trends. Adv. Mater. 2018, 30, 1800939. [Google Scholar] [CrossRef] [PubMed]
- Ghayesh, M.H.; Farajpour, A. A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 2019, 137, 8–36. [Google Scholar] [CrossRef]
- Inoue, A.; Yuk, H.; Lu, B.; Zhao, X. Strong adhesion of wet conducting polymers on diverse substrates. Sci. Adv. 2020, 6, eaay5394. [Google Scholar] [CrossRef][Green Version]
- Cai, G.; Wang, J.; Lee, P.S. Next-Generation Multifunctional Electrochromic Devices. Acc. Chem. Res. 2016, 49, 1469–1476. [Google Scholar] [CrossRef]
- Pei, Q.; Zuccarello, G.; Ahlskog, M.; Inganäs, O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 1994, 35, 1347–1351. [Google Scholar] [CrossRef]
- Casado, N.; Hernández, G.; Veloso, A.; Devaraj, S.; Mecerreyes, D.; Armand, M. PEDOT Radical Polymer with Synergetic Redox and Electrical Properties. ACS Macro Lett. 2016, 5, 59–64. [Google Scholar] [CrossRef]
- Mueller, M.; Fabretto, M.; Evans, D.; Hojati-Talemi, P.; Gruber, C.; Murphy, P. Vacuum vapour phase polymerization of high conductivity PEDOT: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer 2012, 53, 2146–2151. [Google Scholar] [CrossRef]
- Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000, 12, 481–494. [Google Scholar] [CrossRef]
- Bella, F.; Porcarelli, L.; Mantione, D.; Gerbaldi, C.; Barolo, C.; Grätzel, M.; Mecerreyes, D. A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chem. Sci. 2020, 11, 1485–1493. [Google Scholar] [CrossRef][Green Version]
- Minudri, D.; Mantione, D.; Dominguez-Alfaro, A.; Moya, S.; Maza, E.; Bellacanzone, C.; Antognazza, M.R.; Mecerreyes, D. Water Soluble Cationic Poly(3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics. Adv. Electron. Mater. 2020, 6, 2000510. [Google Scholar] [CrossRef]
- Istif, E.; Mantione, D.; Vallan, L.; Hadziioannou, G.; Brochon, C.; Cloutet, E.; Pavlopoulou, E. Thiophene-Based Aldehyde Derivatives for Functionalizable and Adhesive Semiconducting Polymers. ACS Appl. Mater. Interfaces 2020, 12, 8695–8703. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Otley, M.T.; Zhu, Y.; Zhang, X.; Li, M.; Sotzing, G.A. Color-Tuning Neutrality for Flexible Electrochromics Via a Single-Layer Dual Conjugated Polymer Approach. Adv. Mater. 2014, 26, 8004–8009. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Otley, M.T.; Zhang, X.; Li, M.; Asemota, C.; Li, G.; Invernale, M.A.; Sotzing, G.A. Polyelectrolytes exceeding ITO flexibility in electrochromic devices. J. Mater. Chem. C 2014, 2, 9874–9881. [Google Scholar] [CrossRef]
- Walczak, R.M.; Cowart, J.J.S.; Abboud, K.A.; Reynolds, J.R. Conformational locking for band gap control in 3,4-propylenedioxythiophene based electrochromic polymers. Chem. Commun. 2006, 15, 1604–1606. [Google Scholar] [CrossRef]
- Perepichka, I.F.; Besbes, M.; Levillain, E.; Sallé, M.; Roncali, J. Hydrophilic Oligo(oxyethylene)-Derivatized Poly(3,4-ethylenedioxythiophenes): Cation-Responsive Optoelectroelectrochemical Properties and Solid-State Chromism. Chem. Mater. 2002, 14, 449–457. [Google Scholar] [CrossRef]
- Demeter, D.; Blanchard, P.; Allain, M.; Grosu, I.; Roncali, J. Synthesis and Metal Cation Complexing Properties of Crown-Annelated Terthiophenes Containing 3,4-Ethylenedioxythiophene. J. Org. Chem. 2007, 72, 5285–5290. [Google Scholar] [CrossRef]
- Martin, B.D.; Justin, G.A.; Moore, M.H.; Naciri, J.; Mazure, T.; Melde, B.J.; Stroud, R.M.; Ratna, B. An Elastomeric Poly(Thiophene-EDOT) Composite with a Dynamically Variable Permeability Towards Organic and Water Vapors. Adv. Funct. Mater. 2012, 22, 3116–3127. [Google Scholar] [CrossRef]
- Suárez, M.B.; Aranda, C.; Macor, L.; Durantini, J.; Heredia, D.A.; Durantini, E.N.; Otero, L.; Guerrero, A.; Gervaldo, M. Perovskite solar cells with versatile electropolymerized fullerene as electron extraction layer. Electrochim. Acta 2018, 292, 697–706. [Google Scholar] [CrossRef]
- Heredia, D.A.; Gonzalez Lopez, E.J.; Durantini, E.N.; Durantini, J.; Dittrich, T.; Rappich, J.; Macor, L.; Solis, C.; Morales, G.M.; Gervaldo, M.; et al. Electrochemical, spectroelectrochemical and surface photovoltage study of ambipolar C60-EDOT and C60-Carbazole based conducting polymers. Electrochim. Acta 2019, 311, 178–191. [Google Scholar] [CrossRef]
- Gomez, N.; Lee, J.Y.; Nickels, J.D.; Schmidt, C.E. Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv. Funct. Mater. 2007, 17, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers—Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef] [PubMed]
- Collavini, S.; Delgado, J.L. Fullerenes: The stars of photovoltaics. Sustain. Energy Fuels 2018, 2, 2480–2493. [Google Scholar] [CrossRef]
- Nasybulin, E.; Cox, M.; Kymissis, I.; Levon, K. Electrochemical codeposition of poly(thieno[3,2-b]thiophene) and fullerene: An approach to a bulk heterojunction organic photovoltaic device. Synth. Met. 2012, 162, 10–17. [Google Scholar] [CrossRef]
- He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Treat, N.D.; Varotto, A.; Takacs, C.J.; Batara, N.; Al-Hashimi, M.; Heeney, M.J.; Heeger, A.J.; Wudl, F.; Hawker, C.J.; Chabinyc, M.L. Polymer-fullerene miscibility: A metric for screening new materials for high-performance organic solar cells. J. Am. Chem. Soc. 2012, 134, 15869–15879. [Google Scholar] [CrossRef]
- Koeppe, R.; Sariciftci, N.S. Photoinduced charge and energy transfer involving fullerene derivatives. Photochem. Photobiol. Sci. 2006, 5, 1122–1131. [Google Scholar] [CrossRef]
- Montellano López, A.; Mateo-Alonso, A.; Prato, M. Materials chemistry of fullerene C60 derivatives. J. Mater. Chem. 2011, 21, 1305–1318. [Google Scholar] [CrossRef]
- Sethumadhavan, V.; Zuber, K.; Bassell, C.; Teasdale, P.R.; Evans, D. Hydrolysis of doped conducting polymers. Commun. Chem. 2020, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics. Adv. Mater. 2020, 32. [Google Scholar] [CrossRef]
- Rahman, G.M.A.; Guldi, D.M.; Cagnoli, R.; Mucci, A.; Schenetti, L.; Vaccari, L.; Prato, M. Combining Single Wall Carbon Nanotubes and Photoactive Polymers for Photoconversion. J. Am. Chem. Soc. 2005, 127, 10051–10057. [Google Scholar] [CrossRef] [PubMed]
- Campidelli, S.; Klumpp, C.; Bianco, A.; Guldi, D.M.; Prato, M. Functionalization of CNT: Synthesis and applications in photovoltaics and biology. J. Phys. Org. Chem. 2006, 19, 531–539. [Google Scholar] [CrossRef]
- Cao, C.; Zhou, Y.; Ubnoske, S.; Zang, J.; Cao, Y.; Henry, P.; Parker, C.B.; Glass, J.T. Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Adv. Energy Mater. 2019, 9. [Google Scholar] [CrossRef]
- Lau, K.K.S.; Bico, J.; Teo, K.B.K.; Chhowalla, M.; Amaratunga, G.A.J.; Milne, W.I.; McKinley, G.H.; Gleason, K.K. Superhydrophobic carbon nanotube forests. Nano Lett. 2003, 3, 1701–1705. [Google Scholar] [CrossRef][Green Version]
- Cheville, R.A.; Halas, N.J. Time-resolved carrier relaxation in solidC60thin films. Phys. Rev. B 1992, 45, 4548–4550. [Google Scholar] [CrossRef]
- Farztdinov, V.M.; Lozovik, Y.E.; Matveets, Y.A.; Stepanov, A.G.; Letokhov, V.S. Femtosecond Dynamics of Photoinduced Darkening in C60 Films. J. Phys. Chem. 1994, 98, 3290–3294. [Google Scholar] [CrossRef]
- Flom, S.R.; Bartoli, F.J.; Sarkas, H.W.; Merritt, C.D.; Kafafi, Z.H. Resonant nonlinear optical properties and excited-state dynamics of pristine, oxygen-doped, and photopolymerizedC60in the solid state. Phys. Rev. B 1995, 51, 11376–11381. [Google Scholar] [CrossRef]
- Miller, B.; Rosamilia, J.M.; Dabbagh, G.; Tycko, R.; Haddon, R.C.; Muller, A.J.; Wilson, W.; Murphy, D.W.; Hebard, A.F. Photoelectrochemical behavior of C60 films. J. Am. Chem. Soc. 1991, 113, 6291–6293. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef][Green Version]
- Akiyama, T.; Yoneda, H.; Fukuyama, T.; Sugawa, K.; Yamada, S.; Takechi, K.; Shiga, T.; Motohiro, T.; Nakayama, H.; Kohama, K. Facile Fabrication and Photocurrent Generation Properties of Electrochemically Polymerized Fullerene–Poly(ethylene dioxythiophene) Composite Films. Jpn. J. Appl. Phys. 2009, 48. [Google Scholar] [CrossRef]
- Alegret, N.; Dominguez-Alfaro, A.; Salsamendi, M.; Jennifer Gomez, I.; Calvo, J.; Mecerreyes, D.; Prato, M. Effect of the fullerene in the properties of thin PEDOT/C-60 films obtained by co-electrodeposition. Inorg. Chim. Acta 2017, 468, 239–244. [Google Scholar] [CrossRef][Green Version]
- Dominguez-Alfaro, A.; Alegret, N.; Arnaiz, B.; Salsamendi, M.; Mecerreyes, D.; Prato, M. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 57330–57342. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Alfaro, A.; Alegret, N.; Arnaiz, B.; González-Domínguez, J.M.; Martin-Pacheco, A.; Cossío, U.; Porcarelli, L.; Bosi, S.; Vázquez, E.; Mecerreyes, D.; et al. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2019, 6, 1269–1278. [Google Scholar] [CrossRef]
- Roncali, J.; Garnier, F.; Lemaire, M.; Garreau, R. Poly mono-, bi- and trithiophene: Effect of oligomer chain length on the polymer properties. Synth. Met. 1986, 15, 323–331. [Google Scholar] [CrossRef]
- Goshi, N.; Castagnola, E.; Vomero, M.; Gueli, C.; Cea, C.; Zucchini, E.; Bjanes, D.; Maggiolini, E.; Moritz, C.; Kassegne, S.; et al. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes. J. Micromech. Microeng. 2018, 28, 12. [Google Scholar] [CrossRef][Green Version]
- Damlin, P.; Kvarnström, C.; Nybäck, A.; Käldström, M.; Ivaska, A. Electrochemical and spectroelectrochemical study on bilayer films composed of C60 and poly(3,4-ethylenedioxythiophene) PEDOT. Electrochim. Acta 2006, 51, 6060–6068. [Google Scholar] [CrossRef]
- Sydam, R.; Deepa, M. Color in Poly(3,4-ethylenedioxythiophene) with Profound Implications for Electronic, Electrochemical, and Optical Functions. ChemPlusChem 2012, 77, 778–788. [Google Scholar] [CrossRef][Green Version]
- Pozo-Gonzalo, C.; Salsamendi, M.; Pomposo, J.A.; Grande, H.-J.; Schmidt, E.; Rusakov, Y.; Trofimov, B.A. Influence of the Introduction of Short Alkyl Chains in Poly(2-(2-Thienyl)-1H-pyrrole) on Its Electrochromic Behavior. Macromolecules 2008, 41, 6886–6894. [Google Scholar] [CrossRef]
- Shi, W.; Yao, Q.; Qu, S.; Chen, H.; Zhang, T.; Chen, L. Micron-thick highly conductive PEDOT films synthesized via self-inhibited polymerization: Roles of anions. NPG Asia Mater. 2017, 9. [Google Scholar] [CrossRef][Green Version]
Sample | E0/E+1 | E+1/E0 | E0/E−1 | From |
---|---|---|---|---|
bisP/C60 | 0.60 V | 0.15 V | – | Figure 3a |
bisP | 0.65 V | 0.20 V | – | Figure 3a |
PbisP/C60 | 0.45 V | 0.25 V | – | Figure 3b |
PbisP | 0.40 V | 0.10 V | – | Figure 3b |
PEDOT/C60 | 0.80 V | −0.40 V | −0.85 V | [41] |
PEDOT | 0.55 V | −0.25 V | −0.7 V | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez-Alfaro, A.; Gómez, I.J.; Alegret, N.; Mecerreyes, D.; Prato, M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers 2021, 13, 436. https://doi.org/10.3390/polym13030436
Dominguez-Alfaro A, Gómez IJ, Alegret N, Mecerreyes D, Prato M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers. 2021; 13(3):436. https://doi.org/10.3390/polym13030436
Chicago/Turabian StyleDominguez-Alfaro, Antonio, I. Jénnifer Gómez, Nuria Alegret, David Mecerreyes, and Maurizio Prato. 2021. "2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer" Polymers 13, no. 3: 436. https://doi.org/10.3390/polym13030436