Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood and Treatment
2.2. Mycological Tests
2.2.1. Effectiveness of Caffeine Treatment against Rot-Fungi Attack
2.2.2. Effectiveness of Caffeine Treatment against Wood-Staining Fungi Attack
2.2.3. Effectiveness of Caffeine Treatment against Mould Attack
2.3. Physical and Mechanical Properties
2.4. LC/MS Analyses
2.5. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinprecht, L. Wood Deterioration, Protection and Maintenance, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 376. [Google Scholar]
- Barbero-López, A.; Akkanen, J.; Lappalainen, R.; Peräniemi, S.; Haapala, A. Bio-based wood preservatives: Their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. Sci. Total Environ. 2021, 753, 142013. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies. Principles, Sustainability, and the Need for Inovation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; p. 431. [Google Scholar]
- Singh, T.; Singh, A.P. A review on natural products as wood protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Broda, M. Natural compounds for wood protection against fungi—A review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef]
- Arora, D.S.; Ohlan, D. In vitro studies on antifungal activity of tea (Camellia sinensis) and coffee (Coffea arabica) against wood-rotting fungi. J. Basic Microbiol. 1997, 37, 159–165. [Google Scholar] [CrossRef]
- Kwaśniewska-Sip, P.; Cofta, G.; Nowak, P.B. Resistance of fungal growth on Scots pine treated with caffeine. Int. Biodeterior. Biodegrad. 2018, 132, 178–184. [Google Scholar] [CrossRef]
- Kobetičová, K.; Böhm, M.; Nábělková, J.; Černý, R. Influence of selected storage temperatures on wood properties and its biological resistance after the use of methylxanthines. BioResources 2021, 16, 6231–6243. [Google Scholar] [CrossRef]
- Nathason, J.A. Caffeine and related methylxanthines: Possible naturally occurring pesticides. Science 1984, 226, 184–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekounougou, S.; Ondo, J.P.; Jacquot, J.P.; Nevers, G.; Gérardin, P.; Gelhaye, E. Effects of Caffeine on Growth of Wood-Decaying Fungi; Internationla Research Group on Wood Protection: Stockholm, Sweden, 2007. [Google Scholar]
- Lekounougou, S.; Jacquot, J.P.; Gérardin, P.; Gelhaye, E. Effects of propiconazole on extra-cellular enzymes involved in nutrient mobilization during Trametes versicolor wood colonization. Wood Sci. Technol. 2008, 42, 169–177. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Frankowski, M. Durability of wood treated with AATMOS and caffeine–towards the long-term carbon storage. Maderas. Cienc. Tecnol. 2018, 20, 455–468. [Google Scholar] [CrossRef]
- Šimůnková, K.; Reinprecht, L.; Nábělková, J.; Hýsek, Š.; Kindl, J.; Borůvka, V.; Lišková, T.; Šobotník, J.; Pánek, M. Caffeine–Perspective natural biocide for wood protection against decaying fungi and termites. J. Clean. Prod. 2021, 304, 127110. [Google Scholar] [CrossRef]
- Kobetičová, K.; Nábělková, J.; Ďurišová, K.; Šimůnková, K.; Černý, R. Antifungal activity of methylxanthines. BioResources 2020, 15, 8110–8120. [Google Scholar] [CrossRef]
- Kwaśniewska-Sip, P.; Bartkowiak, M.; Cofta, G.; Nowak, P.B. Resistance of Scots Pine (Pinus sylvestris L.) after treatment with caffeine and thermal modification against Aspergillus niger. BioResources 2019, 14, 1890–1898. [Google Scholar] [CrossRef]
- Sandberg, D. Additives in Wood Products—Today and Future Development. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts, Environmental Footprints and Eco-Design of Products and Processes; Springer Science + Business Media: Singapore, 2016; pp. 105–172. [Google Scholar] [CrossRef] [Green Version]
- Kwaśniewska-Sip, P.; Woźniak, M.; Jankowski, W.; Ratajczak, I.; Cofta, G. Chemical changes of wood treated with caffeine. Materials 2021, 14, 497. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, O.; Nilsson, T. Wood and Tree Fungi–Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006; p. 334. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B. Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake. Int. Biodeterior. Biodegrad. 2013, 85, 223–227. [Google Scholar] [CrossRef]
- Pardo, T.; Alfaro, J. White-rot fungal resistance of Teak and melina wood treated with acetic anhydride. Int. Biodeterior. Biodegrad. 2014, 88, 44–47. [Google Scholar] [CrossRef]
- Bak, M.; Németh, R. Effect of different nanoparticle treatments on the decay resistance of wood. BioResources 2018, 13, 7886–7899. [Google Scholar] [CrossRef] [Green Version]
- EN 350. In Durability of Wood and Wood-Based Products—Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials; European Committee for Standardization: Brussels, Belgium, 2016.
- Borůvka, V.; Zeidler, A.; Schönfelder, O.; Šimůnková, K. Selected physical and mechanical properties of beech wood treated by caffeine. In Proceedings of the 9th Hardwood Conference, Sopron, Hungary, 21–22 October 2020; pp. 50–56. [Google Scholar]
- EN 839. In Wood Preservatives-Determination of the Protective Effectiveness against Wood Destroying Basidiomycetes-Application by Surface Treatment; European Committee for Standardization: Brussels, Belgium, 2015.
- EN 152. In Determination of the Protective Effectiveness of a Preservative Treatment against Blue Stain in Wood in Service. Laboratory Method; European Committee for Standardization: Brussels, Belgium, 2012.
- EN 15457. In Paints and Varnishes-Laboratory Method for Testing the Efficacy of Film Preservatives in a Coating against Fungi; European Committee for Standardization: Brussels, Belgium, 2015.
- ČSN 49 0101. In Drevo. Všeobecné Požiadavky na Fyzikálne a Mechanické Skúšky (Wood. General Requirements for Physical and Mechanical Testing); Office for Standardization and Measurement: Prague, Czech Republic, 1980.
- ČSN 49 0108. In Drevo. Zisťovanie Hustoty (Wood. Determination of the Density); Czech Standards Institute: Prague, Czech Republic, 1993.
- ČSN 49 0115. In Drevo. Zist’ovanie Medze Pevnosti v Statickom Ohybe (Wood. Determination of Ultimate Strength in Flexure Tests); Office for Standardization and Measurement: Prague, Czech Republic, 1979.
- ČSN 49 0116. In Drevo. Metóda Zisťovania Modulu Pružnosti Pri Statickom Ohybe (Wood. Determination of the Modulus of Elasticity in Static Bending); Office for Standardization and Measurement: Prague, Czech Republic, 1982.
- ČSN 49 0126. In Skúšky Vlastností Rastlého Dreva. Metóda Zisťovania Napúčavosti (Testing of Growth Wood Properties. Method for Determination of Swelling); Office for Standardization and Measurement: Prague, Czech Republic, 1989.
- ČSN EN 310. In Desky ze Dřeva. Stanovení Modulu Pružnosti v Ohybu a Pevnosti v Ohybu (Wood based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength); Czech Standards Institute: Prague, Czech Republic, 1996.
- FAKOPP. Ultrasonic Timer User’s Guide. Available online: http://fakopp.com/docs/products/ultrasonic/UltrasonicGuide.pdf (accessed on 9 September 2021).
- Požgaj, A.; Chovanec, D.; Kurjatko, S.; Babiak, M. Štruktúra a Vlastnosti Dreva. (Structure and Properties of Wood), 1st ed.; Príroda a.s.: Bratislava, Slovakia, 1993; p. 485. [Google Scholar]
- Wagenführ, R. Dřevo—Obrazový Lexikon; GRADA Publishing: Praha, Czech Republic, 2002; p. 348. ISBN 80-247-0346-7. [Google Scholar]
- Pánek, M.; Šimůnková, K.; Novák, D.; Dvořák, O.; Schönfelder, O.; Šedivka, P.; Kobetičová, K. Caffeine and TiO2 nanoparticles treatment of spruce and beech wood for increasing transparent coating resistence against UV-radiation and mould attacks. Coatings 2020, 10, 1141. [Google Scholar] [CrossRef]
- Kobetičová, K.; Nábělková, J.; Černý, R. Uptake of caffeine by Serpula lacrymans. AIP Conf. Proc. 2020, 2275, 020011. [Google Scholar] [CrossRef]
- Carrasco-Cabrera, C.P.; Bell, T.L.; Kertesz, M.A. Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Appl. Microbiol. Biot. 2019, 103, 5831–5841. [Google Scholar] [CrossRef]
- Adams, D.J. Fungal cell wall chitinases and glucanases. Microbiology 2004, 150, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Gooday, G.W. Aggresive and defensive roles for chitinases. In Chitin and Chitinases; Jollès, P., Muzzarelli, R.A.A., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1999; pp. 157–165. [Google Scholar]
- Duo-Chuan, L. Review of fungal chitinases. Mycopathologia 2006, 161, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Sahai, A.S.; Manocha, M.S. Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev. 1993, 11, 317–338. [Google Scholar] [CrossRef]
- Gortari, M.; Hours, R.A. Fungal chitinases and their biological role in the antagonism onto nematode eggs: A review. Mycol. Progress. 2008, 7, 221–238. [Google Scholar] [CrossRef]
- Šimůnková, K.; Zeidler, A.; Schönfelder, O.; Pánek, M. Impact of modification by caffeine on some surface properties of beech wood. In Proceedings of the 9th Hardwood Conference, Sopron, Hungary, 21–22 October 2020; pp. 248–251. [Google Scholar]
- EN 113. In Wood Preservatives-Test Method for Determining the Protective Effectiveness against Wood Destroying Basidiomycetes. Determination of the Toxic Values; European Committee for Standardization: Brussels, Belgium, 1996.
- Giordano, L.; Gonthier, P.; Negro, F.; Zanuttini, R.; Cremonini, C. Effectiveness of new molecules against widespread mould for-safe hardwood and softwood packaging. Eur. Wood Prod. J. 2021, 79, 227–236. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zidan, Y.E.; Hadidi, N.M.N.; Mansour, M.M.A. Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. Int. Biodeterior. Biodegrad. 2016, 110, 206–226. [Google Scholar] [CrossRef]
- Lehringer, C.H.; Richter, K.; Schwarze, F.W.M.R.; Militz, H. A review on promising approaches for liquid permeability improvement in softwoods. Wood Fiber Sci. 2009, 41, 373–385. [Google Scholar]
- Fengel, D.; Wegener, G. Wood—Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1984; p. 613. [Google Scholar]
- Tsoumis, G.T. Science and Technology of Wood: Structure, Properties, Utilization, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1991; p. 494. ISBN 0-442-23985-8. [Google Scholar]
- Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composites, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1982; p. 712. ISBN 0442008228. [Google Scholar]
- Hill, C.A.S. Wood Modification—Chemical, Thermal and Other Processes; John Wiley and Sons Ltd.: Chichester, UK, 2006; p. 239. ISBN 978-0-470-02172-9. [Google Scholar]
- Hon, D.N.S.; Shiraishi, N. Wood and Cellulosic Chemistry, 2nd ed.; Revised, and Expanded; CRC Press: Boca Raton, FL, USA, 2000; p. 928. ISBN 0-8247-0024-4. [Google Scholar]
- Siau, J.F. Transport. Processes in Wood; Springer: Berlin/Heidelberg, Germany, 1984; p. 248. ISBN 978-3-642-69215-4. [Google Scholar]
- Skaar, C. Wood-Water Relations; Springer: Berlin/Heidelberg, Germany, 1988; p. 283. ISBN 978-3-642-73685-8. [Google Scholar]
Modification | Density (kg·m−3) | Oven-Dry Density (kg·m−3) | Volumetric Swelling (%) | Dynamic MOE (MPa) |
---|---|---|---|---|
Reference | 434 | 411 | 14.9 | 12,703 |
(16) | (14) | (0.7) | (1427) | |
Water | 444 | 406 | 14.4 | 13,152 |
(17) | (10) | (1.0) | (2060) | |
Caffeine | 449 | 412 | 14.6 | 12,864 |
(18) | (13) | (1.2) | (1893) |
Modification | Density (kg·m−3) | Oven-Dry Density (kg·m−3) | Volumetric Swelling (%) | Dynamic MOE (MPa) |
---|---|---|---|---|
Reference | 566 | 505 | 13.4 | 14,134 |
(13) | (11) | (1.6) | (2137) | |
Water | 573 | 500 | 13.1 | 14,154 |
(24) | (12) | (1.9) | (1555) | |
Caffeine | 574 | 515 | 13.0 | 13,068 |
(10) | (11) | (2.1) | (1113) |
Modification | Density (kg·m−3) | Oven-Dry Density (kg·m−3) | Volumetric Swelling (%) | Dynamic MOE (MPa) |
---|---|---|---|---|
Reference | 691 | 662 | 23.3 | 16,398 |
(13) | (12) | (0.8) | (1010) | |
Water | 689 | 657 | 22.4 | 16,481 |
(10) | (9) | (1.1) | (1050) | |
Caffeine | 680 | 653 | 21.5 | 15,384 |
(19) | (8) | (0.5) | (1483) |
Concentration of Caffeine Solution | Depth of Treated Wood Layer | Concentration of Caffeine in Wood (mg of Caffeine/g of Wood) | ||
---|---|---|---|---|
Mature Spruce Wood | Pine Sapwood | Beech Wood | ||
c = 1% | 1st layer (0.0–0.5 mm) | 9.31 (0.29) | 9.13 (0.52) | 5.50 (0.18) |
2nd layer (0.5–1.0 mm) | 1.39 (0.38) | 7.77 (1.05) | 1.02 (0.10) | |
3rd layer (1.0–1.5 mm) | 0.79 (0.24) | 5.04 (0.11) | 0.80 (0.02) | |
c = 2% | 1st layer (0.0–0.5 mm) | 11.49 (0.22) | 9.95 (1.97) | 8.85 (0.53) |
2nd layer (0.5–1.0 mm) | 0.52 (0.18) | 6.48 (0.33) | 1.30 (0.17) | |
3rd layer (1.0–1.5 mm) | 0.61 (0.11) | 5.15 (0.03) | 1.36 (0.35) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pánek, M.; Borůvka, V.; Nábělková, J.; Šimůnková, K.; Zeidler, A.; Novák, D.; Černý, R.; Kobetičová, K. Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species. Polymers 2021, 13, 3758. https://doi.org/10.3390/polym13213758
Pánek M, Borůvka V, Nábělková J, Šimůnková K, Zeidler A, Novák D, Černý R, Kobetičová K. Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species. Polymers. 2021; 13(21):3758. https://doi.org/10.3390/polym13213758
Chicago/Turabian StylePánek, Miloš, Vlastimil Borůvka, Jana Nábělková, Kristýna Šimůnková, Aleš Zeidler, David Novák, Robert Černý, and Klára Kobetičová. 2021. "Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species" Polymers 13, no. 21: 3758. https://doi.org/10.3390/polym13213758
APA StylePánek, M., Borůvka, V., Nábělková, J., Šimůnková, K., Zeidler, A., Novák, D., Černý, R., & Kobetičová, K. (2021). Efficacy of Caffeine Treatment for Wood Protection—Influence of Wood and Fungi Species. Polymers, 13(21), 3758. https://doi.org/10.3390/polym13213758