Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Preparation of Teeth and Materials
2.2. Erosive Challenge
2.3. Experimental Design
- Immediate (24 h) microtensile bond strength (n = 8);
- Immediate (24 h) hardness and elastic modulus (n = 3);
- Long-term (after 3 months of aging) microtensile bond strength (n = 8);
- Long-term (after 3 months of aging) hardness and elastic modulus (n = 3).
2.4. Restorative Procedures
2.5. Microtensile Bond Strength (μTBS)
2.6. Nanoindentation
2.7. Statistical Analysis
3. Results
3.1. Microtensile Bond Strength and Fractographic Analysis
3.2. Hardness and Reduced Young’s Modulus
Hardness and Reduced Young’s Modulus Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartlett, D.; O’Toole, S. Tooth wear and aging. Aust. Dent. J. 2019, 64, S59–S62. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.S.; Colon, P.; Ganss, C.; Huysmans, M.C.; Lussi, A.; Schlueter, N.; Schmalz, G.; Shellis, R.P.; Tveit, A.B.; Wiegand, A. Consensus report of the European Federation of Conservative Dentistry: Erosive tooth wear—diagnosis and management. Clin. Oral Investig. 2015, 19, 1557–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loomans, B.; Opdam, N.; Attin, T.; Bartlett, D.; Edelhoff, D.; Frankenberger, R.; Benic, G.; Ramseyer, S.; Wetselaar, P.; Sterenborg, B.; et al. Severe tooth wear: European consensus statement on management guidelines. J. Adhes. Dent. 2017, 19, 111–119. [Google Scholar] [CrossRef]
- de Rossi, G.R.C.; Ozcan, M.; Volpato, C.A.M. How to improve bond stability to eroded dentin: A comprehensive review. J. Adhes. Sci. Technol. 2021, 35, 1015–1034. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshihara, K.; van Landuyt, K.; Yoshida, Y.; Peumans, M. From buonocore’s pioneering acid-etch technique to self-adhering restoratlves. A status perspective of rapidly advancing dentai adheslve technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Spencer, P.; Ye, Q.; Park, J.; Topp, E.M.; Misra, A.; Marangos, O.; Wang, Y.; Bohaty, B.S.; Singh, V.; Sene, F.; et al. Adhesive/Dentin interface: The weak link in the composite restoration. Ann. Biomed. Eng. 2010, 38, 1989–2003. [Google Scholar] [CrossRef] [Green Version]
- Nakabayashi, N.; Kojima, K.; Masuhara, E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J. Biomed. Mater. Res. 1982, 16, 265–273. [Google Scholar] [CrossRef]
- Siqueira, F.S.F.; Cardenas, A.M.; Ocampo, J.B.; Hass, V.; Bandeca, M.C.; Gomes, J.C.; Reis, A.; Loguercio, A.D. Bonding performance of universal adhesives to eroded dentin. J. Adhes. Dent. 2018, 20, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Resin bonding to cervical sclerotic dentin: A review. J. Dent. 2004, 32, 173–196. [Google Scholar] [CrossRef]
- de Siqueira, F.S.F.; Hilgemberg, B.; Araujo, L.C.R.; Hass, V.; Bandeca, M.C.; Gomes, J.C.; Reis, A.; Loguercio, A.D.; Cardenas, A.F.M. Improving bonding to eroded dentin by using collagen cross-linking agents: 2 years of water storage. Clin. Oral Investig. 2020, 24, 809–822. [Google Scholar] [CrossRef]
- Forgerini, T.V.; Ribeiro, J.F.; Rocha, R.d.O.; Soares, F.Z.M.; Lenzi, T.L. Role of etching mode on bonding longevity of a universal adhesive to eroded dentin. J. Adhes. Dent. 2017, 19, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Frattes, F.C.; Augusto, M.G.; Torres, C.R.G.; Pucci, C.R.; Borgese, A.B. Bond strength to eroded enamel and dentin using a universal adhesive system. J. Adhes. Dent. 2017, 19, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability-A literature review. Dent. Mater. 2016, 32, e41–e53. [Google Scholar] [CrossRef] [PubMed]
- Tezvergil-Mutluay, A.; Pashley, D.; Mutluay, M.M. Long-Term Durability of Dental Adhesives. Curr. Oral Heal. Rep. 2015, 2, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Flury, S.; Koch, T.; Peutzfeldt, A.; Lussi, A.; Ganss, C. The effect of a tin-containing fluoride mouth rinse on the bond between resin composite and erosively demineralised dentin. Clin. Oral Investig. 2013, 17, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; et al. Paucity of nanolayering in resin-dentin interfaces of MDP-based adhesives. J. Dent. Res. 2015, 95, 380–387. [Google Scholar] [CrossRef]
- Matsui, N.; Takagaki, T.; Sadr, A.; Ikeda, M.; Ichinose, S.; Nikaido, T.; Tagami, J. The role of MDP in a bonding resin of a two-step self-etching adhesive system. Dent. Mater. J. 2015, 34, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Watanabe, H.; Johnson, W.W.; Latta, M.A.; Miyazaki, M. Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Eur. J. Oral Sci. 2017, 125, 215–222. [Google Scholar] [CrossRef]
- Nikaido, T.; Inoue, G.; Takagaki, T.; Waidyasekera, K.; Iida, Y.; Shinohara, M.S.; Sadr, A.; Tagami, J. New strategy to create “Super Dentin” using adhesive technology: Reinforcement of adhesive-dentin interface and protection of tooth structures. Jpn. Dent. Sci. Rev. 2011, 47, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Inoue, G.; Tsuchiya, S.; Nikaido, T.; Foxton, R.M.; Tagami, J. Morphological and Mechanical Characterization of the Acid-base Resistant Zone at the Adhesive-dentin Interface of Intact and Caries-affected Dentin. Oper. Dent. 2006, 31, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Inoue, G.; Nikaido, T.; Foxton, R.M.; Tagami, J. The acid-base resistant zone in three dentin bonding systems. Dent. Mater. J. 2009, 28, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Tezvergil-Mutluay, A.; Agee, K.A.; Mazzoni, A.; Carvalho, R.M.; Carrilho, M.; Tersariol, I.L.; Nascimento, F.D.; Imazato, S.; Tjäderhane, L.; Breschi, L.; et al. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins? Dent. Mater. 2015, 31, e25–e32. [Google Scholar] [CrossRef] [Green Version]
- Imazato, S.; Kinomoto, Y.; Tarumi, H.; Ebisu, S.; Tay, F.R. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent. Mater. 2003, 19, 313–319. [Google Scholar] [CrossRef]
- Guedes, A.P.A.; Moda, M.D.; Suzuki, T.Y.U.; Godas, A.G.L.; Sundfeld, R.H.; Briso, A.L.F.; dos Santos, P.H. Effect of fluoride-releasing adhesive systems on the mechanical properties of eroded dentin. Braz. Dent. J. 2016, 27, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, T.; Takagaki, T.; Sato, T.; Burrow, M.F.; Tagami, J. The concept of super enamel formation —Relationship between chemical interaction and enamel acid-base resistant zone at the self-etch adhesive/enamel interface. Dent. Mater. J. 2020, 39, 2020–2165. [Google Scholar] [CrossRef]
- Nikaido, T.; Takagaki, T.; Sato, T.; Burrow, M.F.; Tagami, J. Fluoride-Releasing Self-Etch Adhesives Create Thick ABRZ at the Interface. BioMed Res. Int. 2021, 2021, 9731280. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of Dental Materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Marshall, G.W.J.; Marshall, S.J.; Kinneyt, J.H. The dentin substrate: Structure properties related to bonding. J. Dent. 1997, 25, 441–458. [Google Scholar] [CrossRef]
- Nakabayashi, N.; Nakamura, M.; Yasuda, N. Hybrid Layer as a Dentin-Bonding Mechanism. J. Esthet. Restor. Dent. 1991, 3, 133–138. [Google Scholar] [CrossRef]
- Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J. Dent. Res. 2011, 90, 953–968. [Google Scholar] [CrossRef]
- Vaidyanathan, T.K.; Vaidyanathan, J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: A critical review. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2009, 88, 558–578. [Google Scholar] [CrossRef]
- Ramos, T.M.; Ramos-Oliveira, T.M.; de Freitas, P.M.; Azambuja, N.; Esteves-Oliveira, M.; Gutknecht, N.; de Paula Eduardo, C. Effects of Er:YAG and Er,Cr:YSGG laser irradiation on the adhesion to eroded dentin. Lasers Med. Sci. 2013, 30, 17–26. [Google Scholar] [CrossRef]
- Belmar da Costa, M.; Delgado, A.H.S.; Pinheiro de Melo, T.; Amorim, T.; Mano Azul, A. Analysis of laboratory adhesion studies in eroded enamel and dentin: A scoping review. Biomater. Investig. Dent. 2021, 8, 24–38. [Google Scholar] [CrossRef]
- Kharouf, N.; Eid, A.; Hardan, L.; Bourgi, R.; Arntz, Y.; Jmal, H.; Foschi, F.; Sauro, S.; Ball, V.; Haikel, Y.; et al. Antibacterial and Bonding Properties of Universal Adhesive Dental Polymers Doped with Pyrogallol. Polymers 2021, 13, 1538. [Google Scholar] [CrossRef]
- Vasconcelos e Cruz, J.; Polido, M.; Brito, J.; Gonçalves, L.L. Dentin Bonding and SEM Analysis of a New Experimental Universal Adhesive System Containing a Dendrimer. Polymers 2020, 12, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warreth, A.; Abuhijleh, E.; Almaghribi, M.A.; Mahwal, G.; Ashawish, A. Tooth surface loss: A review of literature. Saudi Dent. J. 2020, 32, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ururahy, M.S.; Curylofo-Zotti, F.A.; Galo, R.; Nogueira, L.F.B.; Ramos, A.P.; Corona, S.A.M. Wettability and surface morphology of eroded dentin treated with chitosan. Arch. Oral Biol. 2017, 75, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; De Munck, J.; Lussi, A.; Lambrechts, P.; Van Meerbeek, B. Long-term bonding to eroded dentin requires superficial bur preparation. Clin. Oral Investig. 2012, 16, 1451–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flury, S.; Lussi, A.; Peutzfeldt, A. Long-Term Bond Strength of Two Benzalkonium Chloride-Modified Adhesive Systems to Eroded Dentin. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Costa, C.A.G.; Passos, V.F.; Neri, J.R.; Mendonça, J.S.; Santiago, S.L. Effect of Metalloproteinase Inhibitors on Bond Strength of a Self-etching Adhesive on Erosively Demineralized Dentin. J. Adhes. Dent. 2019, 21, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Pena, C.; Rodrigues, J.; Ely, C.; Giannini, M.; Reis, A. Two-year Randomized Clinical Trial of Self-etching Adhesives and Selective Enamel Etching. Oper. Dent. 2016, 41, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peumans, M.; De Munck, J.; Van Landuyt, K.L.; Poitevin, A.; Lambrechts, P.; Van Meerbeek, B. Eight-year clinical evaluation of a 2-step self-etch adhesive with and without selective enamel etching. Dent. Mater. 2010, 26, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, K.; Ohara, N.; Ono, S.; Matsuzaki, K.; Yoshiyama, M. Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements. Restor. Dent. Endod. 2019, 44, e45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Irie, M.; Ogawa, T.; Van Landuyt, K.L.; Osaka, A.; Suzuki, K.; Minagi, S.; et al. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater. 2011, 7, 3187–3195. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.J.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Ozel, E.; Kolayli, F.; Tuna, E.B.; Er, D. In vitro antibacterial activity of various adhesive materials against oral streptococci. Biotechnol. Biotechnol. Equip. 2016, 30, 121–126. [Google Scholar] [CrossRef]
- Tezvergil-Mutluay, A.; Agee, K.A.; Uchiyama, T.; Imazato, S.; Mutluay, M.M.; Cadenaro, M.; Breschi, L.; Nishitani, Y.; Tay, F.R.; Pashley, D.H. The Inhibitory Effects of Quaternary Ammonium Methacrylates on Soluble and Matrix-bound MMPs. J. Dent. Res. 2011, 90, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Imazato, S.; Kuramoto, A.; Takahashi, Y.; Ebisu, S.; Peters, M.C. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent. Mater. 2006, 22, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Kinomoto, Y.; Tarumi, H.; Torii, M.; Russell, R.R.B.; McCabe, J.F. Incorporation of Antibacterial Monomer MDPB into Dentin Primer. J. Dent. Res. 1997, 76, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Ehara, A.; Torii, M.; Ebisu, S. Antibacterial activity of dentine primer containing MDPB after curing. J. Dent. 1998, 26, 267–271. [Google Scholar] [CrossRef]
- Muratovska, I.; Kitagawa, H.; Hirose, N.; Kitagawa, R.; Imazato, S. Antibacterial activity and dentin bonding ability of combined use of Clearfil SE Protect and sodium hypochlorite. Dent. Mater. J. 2018, 37, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Hirose, N.; Kitagawa, H.; Yamaguchi, S.; Imazato, S. Improving the durability of resin-dentin bonds with an antibacterial monomer MDPB. Dent. Mater. J. 2018, 37, 620–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, Í.; Alania, Y.; Feitosa, S.; Borges, A.; Braga, R.; Scaramucci, T. Bioactive Materials Subjected to Erosion/Abrasion and Their Influence on Dental Tissues. Oper. Dent. 2020, 350, E114–E123. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.P.A.; Tabchoury, C.P.M.; Berger, S.B.; Yamauti, M.; Ambrosano, G.M.B.; Giannini, M. Effect of Fluoride-containing Restorative Materials on Dentin Adhesion and Demineralization of Hard Tissues Adjacent to Restorations. J. Adhes. Dent. 2015, 17, 337–345. [Google Scholar] [CrossRef]
- Nikaido, T.; Ichikawa, C.; Li, N.; Takagaki, T.; Sadr, A.; Yoshida, Y.; Suzuki, K.; Tagami, J. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone. Dent. Mater. J. 2011, 30, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, T.; Weerasinghe, D.D.S.; Waidyasekera, K.; Inoue, G.; Foxton, R.M.; Tagami, J. Assessment of the nanostructure of acid–base resistant zone by the application of all-in-one adhesive systems: Super dentin formation. Biomed. Mater. Eng. 2009, 19, 163–171. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Nikaido, T.; Sonoda, H.; Foxton, R.M.; Tagami, J. Ultrastructure of the Dentin-Adhesive Interface after acid-base challenge. J. Adhes. Dent. 2004, 6, 183–190. [Google Scholar] [PubMed]
- Shinohara, M.S.; Yamauti, M.; Inoue, G.; Nikaido, T.; Tagami, J.; GianniniI, M.; De Goes, M.F. Evaluation of Antibacterial and Fluoride-releasing Adhesive System on Dentin-Microtensile Bond Strength and Acid-base Challenge. Dent. Mater. J. 2006, 25, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance—Resin composites: Part I—Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Deari, S.; Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. Influence of Different Pretreatments on the Microtensile Bond Strength to Eroded Dentin. J. Adhes. Dent. 2017, 19, 147–155. [Google Scholar] [CrossRef]
- Francisconi-dos-Rios, L.F.; Casas-Apayco, L.C.; Calabria, M.P.; Francisconi, P.A.S.; Borges, A.F.S.; Wang, L. Role of chlorhexidine in bond strength to artificially eroded dentin over time. J. Adhes. Dent. 2015, 17, 133–139. [Google Scholar] [CrossRef]
- Moda, M.D.; Fagundes, T.C.; Briso, A.L.F.; Dos Santos, P.H. Analysis of the bond interface between self-adhesive resin cement to eroded dentin in vitro. PLoS ONE 2018, 13, e0208024. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Pashley, D.; NishitaniI, Y.; Breschi, L.; Mannello, F.; Tjaderhane, L.; Toledano, M.; Pashley, E.; Tay, F. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials 2006, 27, 4470–4476. [Google Scholar] [CrossRef]
- Nakajima, M.; Okuda, M.; Ogata, M.; Pereira, P.N.R.; Tagami, J.; Pashley, D.H. The durability of a fluoride-releasing resin adhesive system to dentin. Oper. Dent. 2003, 28, 186–192. [Google Scholar]
- Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.W.; Sherriff, M.; Watson, T.F.; Banerjee, A. Effects of MMP Inhibitors Incorporated within Dental Adhesives. J. Dent. Res. 2012, 91, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visse, R.; Nagase, H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Buzalaf, M.A.R.; Magalhães, A.C.; Wiegand, A. Alternatives to Fluoride in the prevention and treatment of dental erosion. In Erosive Tooth Wear: From Diagnosis to Therapy; S. Karger AG: Basel, Switzerland, 2012; pp. 244–252. ISBN 9783318025538. [Google Scholar]
- Montagner, A.F.; Sarkis-Onofre, R.; Pereira-Cenci, T.; Cenci, M.S. MMP Inhibitors on Dentin Stability. J. Dent. Res. 2014, 93, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A.; Tjaderhane, L.; et al. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breschi, L.; Maravic, T.; Comba, A.; Cunha, S.R.; Loguercio, A.D.; Reis, A.; Hass, V.; Cadenaro, M.; Mancuso, E.; Mayer-Santos, E.; et al. Chlorhexidine preserves the hybrid layer in vitro after 10-years aging. Dent. Mater. 2020, 36, 672–680. [Google Scholar] [CrossRef]
- Francois, P.; Fouquet, V.; Attal, J.; Dursun, E. Commercially Available Fluoride-Releasing Restorative Materials: A Review and a Proposal for Classification. Materials 2020, 13, 2313. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.T.; Queiroz, C.S.; Freitas, P.M.; Giannini, M.; Serra, M.C.; Cury, J.A. Fluoride release and secondary caries inhibition by adhesive systems on root dentine. Eur. J. Oral Sci. 2005, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.H.; Giannini, M.; França, R.; Correr, A.B.; Correr-Sobrinho, L.; Consani, S. Correlation between bond strength and nanomechanical properties of adhesive interface. Clin. Oral Investig. 2017, 21, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
Material | Manufacturer | Composition | |
---|---|---|---|
Clearfil™ SE Bond 2 | Kuraray Noritake; Tokyo, Japan Batch number: 00128 Expiracy date: 31–03–2024 | Primer: 10-MDP, HEMA, hydrophilic aliphatic dimethacrylate, dl-camphorquinone Solvent: water | Bond: 10-MDP, Bis-GMA, HEMA, hydrophobic aliphatic dimethacrylate, dl-camphorquinone, iniciators, accelarators, silanated colloidal silica |
Clearfil™ SE Protect | Kuraray Noritake; Tokyo, Japan Batch number: 000070 Expiracy date: 30–09–2022 | Primer: 10-MDP, MDPB, HEMA, hydrophilic dimetachrylate Solvent: water | Bond: 10-MDP, Bis-GMA, HEMA, hydrophobic dimethacrylate, di-canphorquinone, N,N-diethanol-p-toluidine, silanated colloidal silica, surface treated sodium fluoride |
Ceram.xSpectra™ ST HV | Dentsply DeTrey GmbH, Konstanz, Germany Shade: A3 Batch number: 20110007000 | Bis-EMA, Bis-GMA, UDMA, TEGDMA, dimethacrylate resin Glass fillers (78–80 wt%; 60–62% volume): ytterbium trifluoride, propylidynetrimethyl trimethacrylate, 1,12-dodecandioldimethacrylate, 2,6-di-tert-butyl-p-cresol |
Adhesive | Self-Etch Strategy |
---|---|
Clearfil™ SE Bond 2 Clearfil™ SE Protect |
|
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Model | 135.142 | 3 | 45.047 | 2.419 | 0.087 |
Adhesive system | 20.161 | 1 | 20.161 | 350.783 | 0.307 |
Time point | 10.580 | 1 | 10.580 | 0.568 | 0.457 |
Adhesive system × time point | 104.401 | 1 | 104.401 | 5.606 | 0.025 |
Error | 521.412 | 28 | 18.622 | ||
Total | 7188.800 | 32 |
Failures (%) | Adhesive | Cohesive Composite | Cohesive Dentin | Mixed | PTF | |
---|---|---|---|---|---|---|
Immediate | CFSE | 38 | 27 | 1 | 24 | 10 |
CFP | 58 | 14 | 1 | 17 | 11 | |
3 months | CFSE | 47 | 18 | 1 | 20 | 14 |
CFP | 52 | 14 | 1 | 19 | 13 |
Immediate (24 h) | Long Term (3 m) | ||||||
---|---|---|---|---|---|---|---|
HL | AL | Dentin | HL | AL | Dentin | ||
H (GPa) | CFSE | 0.43 (0.19) aA | 0.62 (0.20) aA | 0.79 (0.23) aA | 0.32 (0.10) aA | 0.37 (0.19) bA | 0.76 (0.32) aA |
CFP | 0.52 (0.18) aA | 0.64 (0.21) aA | 0.83 (0.25) aA | 0.46 (0.30) aA | 0.39 (0.18)bA | 1.52 (0.61) bA | |
Er (GPa) | CFSE | 6.08 (2.30) aA | 8.30 (3.07) aA | 13.91 (3.38) aA | 4.88 (1.07) aA | 5.61 (1.80) bA | 15.63 (5.27) aA |
CFP | 6.21 (1.13) aA | 8.17 (1.84) aA | 19.80 (4.39) aB | 6.44 (1.24) bA | 5.9 (1.10) bA | 19.44 (5.79) aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmar da Costa, M.; Delgado, A.H.; Amorim Afonso, T.; Proença, L.; Ramos, A.S.; Mano Azul, A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers 2021, 13, 3562. https://doi.org/10.3390/polym13203562
Belmar da Costa M, Delgado AH, Amorim Afonso T, Proença L, Ramos AS, Mano Azul A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers. 2021; 13(20):3562. https://doi.org/10.3390/polym13203562
Chicago/Turabian StyleBelmar da Costa, Madalena, António HS Delgado, Tomás Amorim Afonso, Luís Proença, Ana Sofia Ramos, and Ana Mano Azul. 2021. "Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin" Polymers 13, no. 20: 3562. https://doi.org/10.3390/polym13203562
APA StyleBelmar da Costa, M., Delgado, A. H., Amorim Afonso, T., Proença, L., Ramos, A. S., & Mano Azul, A. (2021). Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers, 13(20), 3562. https://doi.org/10.3390/polym13203562