Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filament Preparation
2.2. Carbon Fiber-Reinforced Pellets
2.3. Fused Filament Fabrication (FFF) Printing Process
2.4. Surface Roughness Measurement
2.5. The Overmolding Process
2.6. Tensile Tests
3. Experimental Plan
4. Results and Discussion
4.1. Effect of Printing Parameters on Bonding Strength
4.2. The Effect of Infill Density on Bonding Strength
4.3. Effect of Local Infill Density on Bonding Strength
4.4. Effect of Microstructure on Bonding Strength
4.5. Effect of Fiber Reinforcement on Bonding Strength
4.6. Comparison of the Obtained Results
4.7. Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Ma, H.-S.; Yang, J.-H.; Wang, K.-S. Industry 4.0: A way from mass customisation to mass personalisation production. Adv. Manuf. 2017, 5, 311–320. [Google Scholar] [CrossRef]
- Bragalia, M.; Lamastra, F.R.; Cherubini, V.; Nanni, F. 3D Printing of polybutadiene rubber cured by photo-induced thiol-ene chemistry: A proof of concept. eXPRESS Polym. Lett. 2020, 14, 576–582. [Google Scholar] [CrossRef]
- Keresztes, Z.; Pammer, D.; Szabo, P.J. EBSD examination of argon ion bombarded Ti-5Al-4V samples produced with DMLS technology. Period. Polytech. Mech. Eng. 2019, 63, 195–200. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Kotz, F.; Mader, M.; Dellen, N.; Risch, P.; Kick, A.; Helmer, D.; Rapp, B.E. Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 2020, 11, 873. [Google Scholar] [CrossRef]
- Gutowski, T.; Jiang, S.; Cooper, D.; Corman, G.; Hausmann, M.; Manson, J.A.; Schudeleit, T.; Wegener, K.; Sabelle, M.; Ramos-Grez, J.; et al. Note on the rate and energy efficiency limits for additive manufacturing. J. Ind. Ecol. 2017, 21, 69–79. [Google Scholar] [CrossRef]
- The New Lightweights: Injection Molded ’Hybrid’ Composites Spur Auto Innovation. Available online: https://www.ptonline.com/articles/the-new-lightweights-injection-molded-hybrid-composites-spur-automotive-innovation (accessed on 21 January 2020).
- CAMISMA’s Car Seat Back: Hybrid Composite for High Volume. Available online: https://www.compositesworld.com/articles/camismas-car-seat-back-hybrid-composite-for-high-volume (accessed on 21 January 2020).
- Boros, R.; Rajamani, P.K.; Kovács, J.G. Combination of 3d printing and injection molding: Overmolding and overprinting. eXPRESS Polym. Lett. 2019, 13, 889–897. [Google Scholar] [CrossRef]
- N/a: Overmolded Hybrid Parts Open New Composites Markets. Composite World. 2019. Available online: https://www.compositesworld.com/articles/overmolded-hybrid-parts-open-new-composites-markets (accessed on 20 October 2020).
- Quinlan, H.E.; Hasan, T.; Jaddou, J.; Hart, A.J. Industrial and consumer uses of additive manufacturing: A discussion of capabilities, trajectories, and challenges. J. Ind. Ecol. 2017, 21, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Popescu, D.; Zapciu, A.; Tarba, C.; Laptoiu, D. Fast production of customised three-dimensional-printed hand splints. Rapid Prototyp. J. 2020, 26, 134–144. [Google Scholar] [CrossRef]
- Yap, Y.L.; Sing, S.L.; Yeong, W.Y. A review of 3D printed processes and materials for soft robotics. Rapid Prototyp. J. 2020, 26, 1345–1361. [Google Scholar] [CrossRef]
- Zolfagharian, A.; PArvez Mahmud, M.A.; Gharaie, S.; Bodaghi, M.; Kouzani, A.Z.; Kaynak, A. 3D/4D-printed bending-type soft pneumatic actuators: Fabrication, modelling, and control. Virtual Phys. Prototyp. 2020, 15, 1–30. [Google Scholar] [CrossRef]
- Joo, S.-J.; Yu, M.-H.; Kim, W.S.; Lee, J.-W.; Kim, H.-S. Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fiber polypropylene and continuous glass fiber polypropylene composite. Compos. Struct. 2020, 236. [Google Scholar] [CrossRef]
- Janssen, H.; Peters, T.; Brecher, C. Efficient production of tailored structural thermoplastic composite parts by combining tape placement and 3d printing. Procedia CIRP 2017, 66, 91–95. [Google Scholar] [CrossRef]
- Quan, Z.; Larimore, Z.; Wu, A.; Yu, J.; Qin, X.; Mirotznik, M.; Suhr, J.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Microstructural design and additive manufacturing and characterisation of 3d orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos. Sci. Technol. 2016, 126, 139–148. [Google Scholar] [CrossRef]
- Mark, G.T. Embedding 3d Printed Fiber Reinforcement in Molded Articles. U.S. Patent US20170120519A1, 4 May 2017. [Google Scholar]
- Kazmer, D.O.; Colon, A. Injection printing: Additive molding via shell material extrusion and filling. Addit. Manuf. 2020, 36, 101469. [Google Scholar] [CrossRef]
- King, D.; Tansey, T. Rapid tooling: Selective laser sintering injection tooling. J. Mater. Process. Technol. 2003, 132, 42–48. [Google Scholar] [CrossRef]
- Bagalkot, A.; Pons, D.; Clucas, D.; Symons, D. A methodology for setting the injection moulding process parameters for polymer rapid tooling inserts. Rapid Prototyp. J. 2019, 25, 1493–1505. [Google Scholar] [CrossRef]
- Candal, M.V.; Gordillo, A.; Perez, O.S.; Sanchez, J.J. Study of the adhesion strength on overmolded plastic materials using the essential work of interfacial fracture (ewif) concept. J. Mater. Sci. 2008, 43, 5052–5060. [Google Scholar] [CrossRef]
- Macedo, S.; Lafrance, E.; Martins, C.I.; Douchain, C.; Loux, C.; Krawczak, P. Thin wall injection-overmolding of polyamide 6/polypropylene multilayer parts: Influence of processing conditions on thermomechanical properties of the layer assembly. Int. J. Mater. Prod. Technol. 2016, 52, 53–75. [Google Scholar] [CrossRef]
- Coogan, T.J.; Kazmer, D.O. Prediction of interlayer strength in material extrusion additive manufacturing. Additiva Manuf. 2020, 35. [Google Scholar] [CrossRef]
- Han, P.; Tofangchi, A.; Zhang, S.; Desphande, A.; Hsu, K. Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured peek. Procedia Manuf. 2020, 48, 737–742. [Google Scholar] [CrossRef]
- Bürenhaus, F.; Moritzer, E.; Hirsch, A. Adhesive bonding of fdm-manufactured parts made of ultem 9085considering surface treatment, surface structure, and joint design. Weld. World 2019, 63, 1819–1832. [Google Scholar] [CrossRef]
- Rossing, L.; Scharff, R.B.N.; Chömpff, B.; Wang, C.C.L.; Doubrovski, E.L. Bonding between silicones and thermoplastics using 3d printed mechanical interlocking. Mater. Des. 2020, 186, 108254. [Google Scholar] [CrossRef]
- Ma, R.; Belter, J.T.; Dollar, A.M. Hybrid deposition manufacturing: Design strategies for multimaterial mechanisms via three-dimensional printing and material deposition. J. Mech. Robot. 2015, 7, 10. [Google Scholar] [CrossRef]
- Song, P.; Fu, Z.; Liu, L.; Fu, C.-W. Printing 3d objects with interlocking part. Comput. Aided Geom. Des. 2015, 35–36, 137–148. [Google Scholar] [CrossRef]
- Martinez-Mateo, I.; Carrion Vilches, F.J.; Sanes, J.; Bermudez, M.D. Surface damage of mold steel and its influence on surface roughness of injection molded plastic parts. Wear 2011, 271, 2512–2516. [Google Scholar] [CrossRef]
- Kim, H.; Han, S.; Sea, Y. Novel dual-curing process for a stereolithograhically printed part triggers a remarkably improved interlayer adhesion and excellent mechanical properties. Langmur 2020, 36, 9250–9258. [Google Scholar] [CrossRef]
Method | Varied Parameters | Constant Parameters |
---|---|---|
Printing parameters | Printing speed (20, 40, 60, 80 mm/s) Layer height (0.1, 0.2 mm) Printing orientation (0/90, 45/−45) | Infill density—100% Infill pattern—Rectilinear lines Nozzle temperature—250 °C Platform temperature—105 °C |
Infill density | Infill density (100%, 95%, 90%, 80%, 75%, 50%) | Infill pattern—Rectilinear lines Nozzle temperature—250 °C Platform temperature—105 °C Infill printing speed—40 mm/s Layer height—0.2 mm Printing orientation—45/−45 |
Local infill density | Local infill density (100%, 75%, 50%, 25%, 0%) Local infill pattern—Triangular grid Local infill printing speed—10 mm/s | Infill density—100% Infill pattern—Rectilinear lines Nozzle temperature—250 °C Platform temperature—105 °C Infill printing speed—40 mm/s Layer height—0.2 mm Printing orientation—45/−45 |
Mechanical Interlocking | Microstructure type (6 types) Microstructure printing speed—10 mm/s | |
Fiber reinforcement | Reinforcement type (3 types) |
FFF Processing Parameters | Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Set | vprint (mm/s) | hlayer (mm) | Oprint (deg) | Ra (µm) | Sa (µm) | Bonding Strength (MPa) | Build Time (hours) | |||
Mean | SD | Mean | SD | Mean | SD | |||||
1 | 20 | 0.1 | 0/90 | 3.35 | 1.70 | 36.3 | 2.16 | 10.5 | 1.8 | 4.71 |
2 | 20 | 0.1 | 45/−45 | 7.11 | 1.79 | 23.6 | 5.47 | 10.2 | 1.4 | 4.71 |
3 | 40 | 0.1 | 0/90 | 7.66 | 3.09 | 35.1 | 4.54 | 10.4 | 1.1 | 2.64 |
4 | 40 | 0.1 | 45/−45 | 9.90 | 1.92 | 29.3 | 3.36 | 12.9 | 1.3 | 2.64 |
5 | 60 | 0.1 | 0/90 | 7.96 | 4.77 | 33.1 | 3.09 | 12.2 | 1.8 | 1.91 |
6 | 60 | 0.1 | 45/−45 | 9.47 | 1.25 | 27.9 | 3.45 | 11.7 | 1.3 | 1.91 |
7 | 80 | 0.1 | 0/90 | 11.06 | 4.37 | 34.3 | 3.73 | 9.9 | 1.2 | 1.50 |
8 | 80 | 0.1 | 45/−45 | 11.15 | 1.44 | 26.0 | 6.66 | 12.1 | 0.9 | 1.50 |
9 | 20 | 0.2 | 0/90 | 2.28 | 1.24 | 87.1 | 4.93 | 10.1 | 1.5 | 2.49 |
10 | 20 | 0.2 | 45/−45 | 21.24 | 4.02 | 65.5 | 7.47 | 8.9 | 1.6 | 2.49 |
11 | 40 | 0.2 | 0/90 | 2.38 | 1.04 | 78.1 | 7.12 | 11.3 | 0.7 | 1.49 |
12 | 40 | 0.2 | 45/−45 | 20.97 | 3.85 | 61.8 | 3.43 | 12.4 | 1.5 | 1.49 |
13 | 60 | 0.2 | 0/90 | 21.28 | 7.60 | 22.4 | 4.13 | 10.1 | 1.2 | 1.17 |
14 | 60 | 0.2 | 45/−45 | 15.22 | 5.18 | 24.2 | 6.29 | 11.6 | 2.0 | 1.17 |
15 | 80 | 0.2 | 0/90 | 18.61 | 4.76 | 21.2 | 3.04 | 11.2 | 3.0 | 0.99 |
16 | 80 | 0.2 | 45/−45 | 20.97 | 3.44 | 23.1 | 7.12 | 11.5 | 0.9 | 0.99 |
Source | DF | Adj SS | Adj MS | f-Value | p-Value | Contribution |
---|---|---|---|---|---|---|
PS | 3 | 0.000935 | 0.000312 | 3.00 | 0.082 | 44.02% |
LH | 1 | 0.000072 | 0.000072 | 0.70 | 0.423 | 3.41% |
PO | 1 | 0.000078 | 0.000078 | 0.75 | 0.406 | 3.68% |
Error | 10 | 0.001039 | 0.000104 | 48.89% | ||
Total | 15 | 0.002125 | 100% |
Source | DF | Adj SS | Adj MS | f-Value | p-Value | Contribution |
---|---|---|---|---|---|---|
PS | 3 | 3603.4 | 1201.1 | 3.22 | 0.070 | 41.67% |
LH | 1 | 240.9 | 240.9 | 0.65 | 0.440 | 2.79% |
PO | 1 | 1074.5 | 1074.5 | 2.88 | 0.120 | 12.43% |
Error | 10 | 3729.2 | 372.9 | 43.12% | ||
Total | 15 | 8648.0 | 100% |
Source | DF | Adj SS | Adj MS | f-Value | p-Value | Contribution |
---|---|---|---|---|---|---|
PS | 3 | 0.211559 | 0.070520 | 2594.56 | 0.000 | 66.99% |
LH | 1 | 0.103980 | 0.103980 | 3825.62 | 0.000 | 32.92% |
PO | 1 | 0.000000 | 0.000000 | 0.00 | 1.000 | 0.00% |
Error | 10 | 0.000272 | 0.000027 | 0.09% | ||
Total | 15 | 0.315810 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamani, P.K.; Ageyeva, T.; Kovács, J.G. Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding. Polymers 2021, 13, 309. https://doi.org/10.3390/polym13020309
Rajamani PK, Ageyeva T, Kovács JG. Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding. Polymers. 2021; 13(2):309. https://doi.org/10.3390/polym13020309
Chicago/Turabian StyleRajamani, Praveen Kannan, Tatyana Ageyeva, and József Gábor Kovács. 2021. "Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding" Polymers 13, no. 2: 309. https://doi.org/10.3390/polym13020309
APA StyleRajamani, P. K., Ageyeva, T., & Kovács, J. G. (2021). Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding. Polymers, 13(2), 309. https://doi.org/10.3390/polym13020309