Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous PolyHIPE Microspheres
2.3. Degradation Experiments
2.4. Free Thiol Determination (Ellman’s Assay)
2.5. Functionalization
2.6. Adsorption Experiments
2.7. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kovačič, S.; Krajnc, P. Macroporous monolithic poly(4-vinylbenzyl chloride) columns for organic synthesis facilitation by in situ polymerization of high internal phase emulsions. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6726–6734. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Lee, K.-Y.; Ghorpade, R.V.; Park, H.-H. Superhydrophobic and Compressible Silica-polyHIPE Covalently Bonded Porous Networks via Emulsion Templating for Oil Spill Cleanup and Recovery. Sci. Rep. 2018, 8, 16783. [Google Scholar] [CrossRef] [PubMed]
- Tebboth, M.; Kogelbauer, A.; Bismarck, A. Liquid–Liquid Extraction within Emulsion Templated Macroporous Polymers. Ind. Eng. Chem. Res. 2015, 54, 7284–7291. [Google Scholar] [CrossRef]
- Koler, A.; Paljevac, M.; Cmager, N.; Iskra, J.; Kolar, M.; Krajnc, P. Poly(4-vinylpyridine) polyHIPEs as catalysts for cycloaddition click reaction. Polymer 2017, 126, 402–407. [Google Scholar] [CrossRef]
- Golub, D.; Krajnc, P. Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption. React. Funct. Polym. 2020, 149, 104515. [Google Scholar] [CrossRef]
- Damouny, C.W.; Silverstein, M.S. Hydrogel-Filled, semi-crystalline, nanoparticle-crosslinked, porous polymers from emulsion templating: Structure, properties, and shape memory. Polymer 2016, 82, 262–273. [Google Scholar] [CrossRef]
- Mert, E.H.; Kaya, M.A.; Yıldırım, H. Preparation and Characterization of Polyester–Glycidyl Methacrylate PolyHIPE Monoliths to Use in Heavy Metal Removal. Des. Monomers Polym. 2012, 15, 113–126. [Google Scholar] [CrossRef]
- Vásquez, L.; Davis, A.; Gatto, F.; An, M.N.; Drago, F.; Pompa, P.P.; Athanassiou, A.; Fragouli, D. Multifunctional PDMS polyHIPE filters for oil-water separation and antibacterial activity. Sep. Purif. Technol. 2020, 255, 117748. [Google Scholar] [CrossRef]
- Corti, M.; Calleri, E.; Perteghella, S.; Ferrara, A.; Tamma, R.; Milanese, C.; Mandracchia, D.; Brusotti, G.; Torre, M.L.; Ribatti, D.; et al. Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties. Mater. Sci. Eng. C 2019, 105, 110060. [Google Scholar] [CrossRef]
- Streifel, B.C.; Lundin, J.G.; Sanders, A.M.; Gold, K.A.; Wilems, T.S.; Williams, S.J.; Cosgriff-Hernandez, E.; Wynne, J.H. Hemostatic and Absorbent PolyHIPE–Kaolin Composites for 3D Printable Wound Dressing Materials. Macromol. Biosci. 2018, 18, e1700414. [Google Scholar] [CrossRef]
- Kramer, S.; Cameron, N.; Krajnc, P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers 2021, 13, 1786. [Google Scholar] [CrossRef]
- Gong, S.; Du, S.; Kong, J.; Zhai, Q.; Lin, F.; Liu, S.; Cameron, N.R.; Cheng, W. Skin-Like Stretchable Fuel Cell Based on Gold-Nanowire-Impregnated Porous Polymer Scaffolds. Small 2020, 16, 2003269. [Google Scholar] [CrossRef]
- Pulko, I.; Krajnc, P. High Internal Phase Emulsion Templating—A Path To Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012, 33, 1731–1746. [Google Scholar] [CrossRef]
- Desforges, A.; Arpontet, M.; Deleuze, H.; Mondain-Monval, O. Synthesis and functionalisation of polyHIPE® beads. React. Funct. Polym. 2002, 53, 183–192. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.; Zhang, S.; Chen, J. Aligned Porous Beads Prepared by Frozen Polymerization of Emulsion-Templates Involving Tiny Emulsifier. MATEC Web Conf. 2016, 67, 3045. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zheng, Y.; Zong, L.; Wang, F.; Wang, A. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu2+ and Cd2+. Carbohydr. Polym. 2016, 149, 242–250. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zeng, L.; Liu, H.; Yang, S.; Wang, Y. Preparation of High Internal Water-Phase Double Emulsions Stabilized by a Single Anionic Surfactant for Fabricating Interconnecting Porous Polymer Microspheres. Langmuir 2014, 30, 12154–12163. [Google Scholar] [CrossRef]
- Zhang, H.; Cooper, A.I. Synthesis of Monodisperse Emulsion-Templated Polymer Beads by Oil-in-Water-in-Oil (O/W/O) Sedimentation Polymerization. Chem. Mater. 2002, 14, 4017–4020. [Google Scholar] [CrossRef]
- Wang, B.; Prinsen, P.; Wang, H.; Bai, Z.; Wang, H.; Luque, R.; Xuan, J. Macroporous materials: Microfluidic fabrication, functionalization and applications. Chem. Soc. Rev. 2017, 46, 855–914. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.; Rodriguez-Abreu, C.; Vilanova, N. Recent advances in multiple emulsions and their application as templates. Curr. Opin. Colloid Interface Sci. 2016, 25, 98–108. [Google Scholar] [CrossRef]
- Paterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous microspheres support mesenchymal progenitor cell ingrowth and stimulate angiogenesis. APL Bioeng. 2018, 2, 026103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nai-Hong, L.; Benson, J.R.; Kitawaga, N. Polymeric microbeads and methods of preparation.United. States Patent US 6,100,306, 8 August 2000. [Google Scholar]
- Štefanec, D.; Krajnc, P. 4-Vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions. React. Funct. Polym. 2005, 65, 37–45. [Google Scholar] [CrossRef]
- Štefanec, D.; Krajnc, P. Aryl acrylate porous functional polymer supports from water-in-oil-in-water multiple emulsions. Polym. Int. 2007, 56, 1313–1319. [Google Scholar] [CrossRef]
- Li, Y.; Gong, C.; Zhang, T.; Feng, X.; Zhou, X.; Li, C. Preparation of PolyHIPE beads and the application in bio-degradation of sulfate containing wastewater. React. Funct. Polym. 2018, 131, 142–149. [Google Scholar] [CrossRef]
- Mert, E.H.; Yıldırım, H. Porous functional poly(unsaturated polyester-co-glycidyl methacrylate-co-divinylbenzene) polyHIPE beads through w/o/w multiple emulsions: Preparation, characterization and application. e-Polymers 2014, 14, 65–73. [Google Scholar] [CrossRef]
- Cui, X.; Shao, H.; Song, Y.; Yang, S.; Wang, F.; Liu, H. Preparation of highly interconnected porous polymer microbeads via suspension polymerization of high internal phase emulsions, for fast removal of oil spillage from aqueous environments. RSC Adv. 2019, 9, 25730–25738. [Google Scholar] [CrossRef] [Green Version]
- Moglia, R.; Whitely, M.; Brooks, M.; Robinson, J.; Pishko, M.; Cosgriff-Hernandez, E. Solvent-Free Fabrication of polyHIPE Microspheres for Controlled Release of Growth Factors. Macromol. Rapid Commun. 2014, 35, 1301–1305. [Google Scholar] [CrossRef]
- Whitely, M.; Rodriguez-Rivera, G.; Waldron, C.; Mohiuddin, S.; Cereceres, S.; Sears, N.; Ray, N.; Cosgriff-Hernandez, E. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomater. 2019, 93, 169–179. [Google Scholar] [CrossRef]
- Freire, M.; Dias, A.M.; Coelho, M.A.Z.; Coutinho, J.; Marrucho, I.M. Aging mechanisms of perfluorocarbon emulsions using image analysis. J. Colloid Interface Sci. 2005, 286, 224–232. [Google Scholar] [CrossRef]
- Langford, C.R.; Johnson, D.W.; Cameron, N.R. Chemical functionalization of emulsion-templated porous polymers by thiol–ene “click” chemistry. Polym. Chem. 2014, 5, 6200–6206. [Google Scholar] [CrossRef] [Green Version]
- Paljevac, M.; Gradišnik, L.; Lipovšek, S.; Maver, U.; Kotek, J.; Krajnc, P. Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering. Macromol. Biosci. 2017, 18, 1700306. [Google Scholar] [CrossRef]
- Chen, C.; Eissa, A.; Schiller, T.; Cameron, N.R. Emulsion-Templated porous polymers prepared by thiol-ene and thiol-yne photopolymerisation using multifunctional acrylate and non-acrylate monomers. Polymer 2017, 126, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.; Shimatsu, Y.; Matsushima, R.; Kimura, T.; Kishida, A. In-Situ polymerization of PMMA inside decellularized dermis using UV photopolymerization. Eur. Polym. J. 2014, 60, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, L.V.; Brown, D.P.; Wofford, J.M.; Tondiglia, V.P.; Sutherland, R.L.; Lloyd, P.F.; Bunning, T.J. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization. Polymer 2006, 47, 4411–4420. [Google Scholar] [CrossRef]
- Rydholm, A.E.; Bowman, C.; Anseth, K.S. Degradable thiol-acrylate photopolymers: Polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials 2005, 26, 4495–4506. [Google Scholar] [CrossRef]
- Contreras, M.; Grande-Tovar, C.D.; Vallejo, W.; Chaves-López, C. Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water 2019, 11, 282. [Google Scholar] [CrossRef] [Green Version]
- Vutskits, L.; Briner, A.; Klauser, P.; Gascon, E.; Dayer, A.G.; Kiss, J.Z.; Muller, D.; Licker, M.J.; Morel, D.R. Adverse Effects of Methylene Blue on the Central Nervous System. Anesthesiology 2008, 108, 684–692. [Google Scholar] [CrossRef] [Green Version]
Sample | m(TMPTA) (g) | m(PETMP) (g) | m(HB246) (g) | m(toluene) (g) | Aq. Ph. (%) | m(I784) (g) | thiol:ene |
---|---|---|---|---|---|---|---|
A1 | 1.797 | 2.220 | 0.101 | 2.394 | 80 | 0.102 | 1:1 |
A2 | 2.402 | 1.500 | 0.102 | 2.414 | 80 | 0.097 | 1:2 |
A3 | 2.698 | 1.140 | 0.101 | 2.421 | 80 | 0.098 | 1:3 |
Sample | m(TMPTA) (g) | m(TMPTMP) (g) | m(HB246) (g) | m(toluene) (g) | Aq. Ph. (%) | m(I784) (g) | thiol:ene |
---|---|---|---|---|---|---|---|
B1 | 1.798 | 2.410 | 0.105 | 2.606 | 80 | 0.100 | 1:1 |
B2 | 2.378 | 1.602 | 0.101 | 2.546 | 80 | 0.102 | 1:2 |
B3 | 2.690 | 1.204 | 0.099 | 2.478 | 80 | 0.096 | 1:3 |
Sample | Average Microsphere Diameter (µm) | Found S (%) | Calculated S (%) | Yield (%) |
---|---|---|---|---|
A1 | 439 ± 157 | 12.80 | 14.51 | 95 |
A2 | 491 ± 157 | 10.06 | 9.56 | 95 |
A3 | 500 ± 162 | 7.76 | 8.01 | 97 |
B1 | 411 ± 129 | 12.61 | 13.82 | 93 |
B2 | 435 ± 154 | 9.53 | 9.69 | 94 |
B3 | 425 ± 133 | 7.41 | 7.47 | 97 |
Sample | Surface Cavities (µm) | Surface Windows (µm) | C.S. Cavities (µm) | C.S. Windows (µm) |
---|---|---|---|---|
A1 | 9.4 ± 3.8 | 1.3 ± 1.1 | 9.7 ± 4.2 | 1.2 ± 0.6 |
A2 | 9.6 ± 4.3 | 1.3 ± 0.9 | 8.9 ± 3.9 | 1.4 ± 0.9 |
A3 | 13.2 ± 5.7 | 1.9 ± 1.4 | 10.1 ± 4.9 | 1.5 ± 1.1 |
B1 | 10.6 ± 5.3 | 1.9 ± 1.1 | 30.0 ± 8.7 | 1.7 ± 1.0 |
B2 | 14.1 ± 7.0 | 2.4 ± 1.4 | 16.1 ± 11.0 | 1.8 ± 1.3 |
B3 | 15.5 ± 9.0 | 2.1 ± 1.5 | 13.4 ± 9.2 | 1.5 ± 0.8 |
0.1 M NaOH Degradation | |||||
---|---|---|---|---|---|
Sample | 1 Day (%) | 4 Days (%) | 7 Days (%) | 14 Days (%) | 28 Days (%) |
A1 | 13.3 | 22.7 | 28.7 | 38.7 | 72.6 |
A2 | 6.6 | 13.6 | 19.5 | 26.4 | 48.2 |
A3 | 2.9 | 8.6 | 13.0 | 19.3 | 32.9 |
B1 | 12.6 | 38.7 | 58.7 | 74.4 | 83.5 |
B2 | 5.4 | 10.7 | 14.5 | 21.5 | 43.1 |
B3 | 2.7 | 7.7 | 10.8 | 15.8 | 21.3 |
Methylene Blue Adsorption | ||||
---|---|---|---|---|
Time (min) | qt (B1; mg/g) | qt (B3; mg/g) | B1 (MB Removed; %) | B3 (MB Removed; %) |
15 | 1.8 | 2.6 | 6.8 | 8.6 |
30 | 3.3 | 4.1 | 11.3 | 14.0 |
60 | 3.7 | 6.0 | 12.8 | 21.5 |
120 | 6.7 | 7.8 | 23.0 | 26.9 |
1440 | 12.0 | 7.8 | 40.8 | 27.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramer, S.; Krajnc, P. Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems. Polymers 2021, 13, 3366. https://doi.org/10.3390/polym13193366
Kramer S, Krajnc P. Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems. Polymers. 2021; 13(19):3366. https://doi.org/10.3390/polym13193366
Chicago/Turabian StyleKramer, Stanko, and Peter Krajnc. 2021. "Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems" Polymers 13, no. 19: 3366. https://doi.org/10.3390/polym13193366
APA StyleKramer, S., & Krajnc, P. (2021). Hierarchically Porous Microspheres by Thiol-ene Photopolymerization of High Internal Phase Emulsions-in-Water Colloidal Systems. Polymers, 13(19), 3366. https://doi.org/10.3390/polym13193366