Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials
Abstract
:1. Introduction
2. Thermal Characteristics Mechanism and Model of Composites
2.1. Thermal Conductivity of Composite
2.2. Thermal Conductivity Model of Composites
2.2.1. Theoretical Model of Spherical Filler
2.2.2. Theoretical Model of Fiber Filler
2.2.3. Theoretical Model of Flake Filler
2.2.4. Theoretical Model of Irregular Filler
2.2.5. Theoretical Model of Multifiller
2.3. Thermal Expansion Mechanism of Composite
2.4. Thermal Expansion Model of Composites
3. Modification of Thermal Characteristics of Epoxy Resin Composite Foam Insulation Materials
3.1. Filling Modification of Thermally Conductive Particles
3.2. Filling Modification of Hollow Glass Microsphere
3.3. Filling Modification of Negative CTE
3.4. Fiber Filling Modification
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.D.; Meng, G.D.; Wang, L.L.; Tian, L.; Chen, S.; Wu, G.; Kong, B.; Cheng, Y. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci. Rep. 2021, 11, 2495. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, P.; Zhang, P.; Fan, G.; Wang, G.; Ouyang, X.; Ma, N.; Wei, H. Surface modification of hollow glass microsphere and its marine-adaptive composites with epoxy resin. Adv. Compos. Lett. 2020, 29, 2633366X20974682. [Google Scholar]
- Wang, Y.; Duan, J.K.; Gao, Y.; Jiang, T.; Yang, K.L.; Zhao, Y.; Li, W.G.; Wu, X.F. A summary of epoxy—Based composite buoyancy materials for deep sea equipment. China Plast. Ind. 2020, 48, 1–4. [Google Scholar]
- Wang, L.; Yang, X.; Jiang, T.; Zhang, C.; He, L. Cell morphology, bubbles migration, and flexural properties of non-uniform epoxy foams using chemical foaming agent. J. Appl. Polym. Sci. 2015, 131, 205–212. [Google Scholar] [CrossRef]
- Lu, X.; Xu, G. Thermally Conductive Polymer Composites for Electronic Packaging. J. Appl. Polym. Sci. 1997, 65, 2733–2738. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Dai, W.; Wu, Y.; Wang, M.; Hou, X.; Li, H.; Jiang, N.; Lin, C.; Yu, J. Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC Adv. 2018, 8, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Lin, Y.L.; Chen, C.P.; Jeng, R.J. Preparation of epoxy resin/silica hybrid composites for epoxy molding compounds. J. Appl. Polym. Sci. 2010, 90, 4047–4053. [Google Scholar] [CrossRef]
- Roh, J.H.; Lee, J.H.; Yoon, T.H. Enhanced Adhesion of Silica for Epoxy Molding Compounds (EMCs) by Plasma Polymer Coatings. J. Adhes. Sci. Technol. 2012, 16, 1529–1543. [Google Scholar] [CrossRef]
- Heo, G.Y.; Park, S.J. Effect of coupling agents on thermal, flow, and adhesion properties of epoxy/silica compounds for capillary underfill applications. Powder Technol. 2012, 230, 145–150. [Google Scholar] [CrossRef]
- Liu, Y.P.; Li, L.; Liu, H.C. Study on the thermal properties and electrical properties of micron boron nitride on the thermal properties and electrical properties of silicone modified epoxy resin-based lightweight insulation materials. China J. Electr. Eng. 2021, 41, 1–12. [Google Scholar]
- Kargar, F.; Barani, Z.; Salgado, R.; Debnath, B.; Lewis, J.S.; Aytan, E.; Lake, R.K.; Balandin, A.A. Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl. Mater. Interfaces 2018, 10, 37555–37565. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhang, C.; Zhang, Y.F. Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers 2017, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, C.; Pei, Q.X.; Zhang, Y. Some aspects of thermal transport across the interface between graphene and epoxy in nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 8272–8279. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ni, H.; Chen, J.; Yang, W. Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl. Mater. Interfaces 2016, 8, 19732–19738. [Google Scholar] [CrossRef]
- Tavman, I.H.; Akinci, H. Transverse thermal conductivity of fiber reinforced polymer composites. Int. Commun. Heat Mass Transf. 2000, 27, 253–261. [Google Scholar] [CrossRef]
- Pan, R.; Kovacevic, S.; Lin, T.S.; He, P.; Sekulic, D.P.; Mesarovic, S.D.; Yang, Z.; Shen, Y.; Wei, H. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag-Cu-Ti plus Mo composite interlayer. Mater. Des. 2016, 99, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.J.N. A treatise on electricity and magnetism. Nature 1873, 7, 478–480. [Google Scholar]
- Progelhof, R.C.; Throne, J.L.; Ruetsch, R. Science. Methods for predicting the thermal nonductivity of composite systems: A review. Polym. Eng. Sci. 1976, 16, 615–625. [Google Scholar] [CrossRef]
- Bruggeman, D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizittskonstanten Leitfhigkeiten Mischkrper isotropen Substanzen. Ann. Phys. 1937, 421, 160–178. [Google Scholar] [CrossRef]
- Nielsen, L.E. Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 1970, 41, 4626–4627. [Google Scholar] [CrossRef]
- Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 2010, 32, 5705–5712. [Google Scholar] [CrossRef]
- Hatta, H.; Taya, M.; Kulacki, F.A.; Harder, J.F. Thermal diffusivities of composites with various types of filler. J. Compos. Mater. 1992, 26, 612–625. [Google Scholar] [CrossRef]
- Liu, Z.K.; Shang, S.L.; Wang, Y. Fundamentals of thermal expansion and thermal contraction. Materials (Basel) 2017, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.J.M. Two decades of negative thermal expansion research: Where do we stand? Materials (Basel) 2012, 5, 1125–1154. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Sun, Y.; Deng, S.; Shi, K.; Lu, H.; Hu, P.; Zhang, X. First-principles study of Sc1-xTixF3 (X0.375): Negative thermal expansion, phase transition, and compressibility. J. Am. Ceram. Soc. 2015, 98, 2852–2857. [Google Scholar] [CrossRef]
- Jeong, I.; Kim, C.B.; Kang, D.G.; Jeong, K.; Jang, S.G.; You, N.; Ahn, S.; Lee, D.; Goh, M. Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 708–715. [Google Scholar] [CrossRef]
- Liang, D. Research on the Preparation and Thermal Conductivity of Epoxy Composite Materials. Master’s Thesis, Xi’an University of Technology, Xi’an, China, November 2020. [Google Scholar]
- Tu, H.; Ye, L. Thermal conductive PS/graphite composites. Polym. Adv. Technol. 2009, 20, 21–27. [Google Scholar] [CrossRef]
- Song, W.L.; Wang, P.; Cao, L.; Anderson, A.; Meziani, M.J.; Farr, A.J.; Sun, Y.P. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew. Chem. Int. Ed. Engl. 2012, 51, 6498–6501. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202. [Google Scholar] [CrossRef]
- Yang, X.T.; Liang, C.B.; Ma, T.B.; Guo, Y.; Kong, J.; Gu, J.; Chen, M.; Zhu, J. A review on thermally conductive polymeric composites: Classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid Mater. 2018, 1, 207–230. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Wang, Z.D.; Priego, P.; Meziani, M.J.; Wirth, K.; Bhattacharya, S.; Rao, A.; Wang, P.; Sun, Y. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties. Nanoscale Adv. 2020, 2, 2507–2513. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.L.; Lin, J.S.J.P.C. Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 2016, 39, 670. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jiang, P.; Xie, L. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 2009, 95, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Datsyuk, V.; Trotsenko, S.; Reich, S. Carbon-nanotube–polymer nanofibers with high thermal conductivity. Carbon 2013, 52, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.L.; Sun, J.J.; Yao, Y.M.; Sun, R.; Xu, J.B.; Wong, C.P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178. [Google Scholar] [CrossRef]
- Skaff, H.; Emrick, T. Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 5383–5386. [Google Scholar] [CrossRef]
- Li, H.; Ai, D.; Ren, L.; Yao, B.; Han, Z.; Shen, Z.; Wang, J.; Chen, L.Q.; Wang, Q. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 2019, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Meziani, M.J.; Patel, A.K.; Priego, P.; Wirth, K.; Wang, P.; Sun, Y. Boron nitride nanosheets from different preparations and correlations with their material properties. Ind. Eng. Chem. Res. 2019, 58, 18644–18653. [Google Scholar] [CrossRef]
- Hong, J.P.; Yoon, S.W.; Hwang, T.; Oh, J.; Hong, S.; Lee, Y.; Nam, J. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 2012, 537, 70–75. [Google Scholar] [CrossRef]
- Moradi, S.; Calventus, Y.; Román, F.; Hutchinson, J.M.J.P. Achieving high thermal conductivity in epoxy composites: Effect of boron nitride particle size and matrix-filler interface. Polymers (Basel) 2019, 11, 1156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.R.; Tuo, R.; Yang, W.; Wu, J.; Zhu, J.; Zhang, C.; Lin, J.; Bian, X. Improved thermal and electrical properties of epoxy resin composites by dopamine and Silane coupling agent modified hexagonalBN. Polym. Compos. 2020, 41, 4727–4739. [Google Scholar] [CrossRef]
- Sun, J.; Wang, D.; Yao, Y.; Zeng, X.; Pan, G.; Huang, Y.; Hu, J.; Sun, R.; Xu, J.; Wong, C. Boron nitride microsphere/epoxy composites with enhanced thermal conductivity. High Volt. 2017, 2, 147–153. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Zhang, B.; Liu, S.; Li, D.; Liu, C. Oriented boron nitride nanosheet films for thermal management and electrical insulation in electrical and electronic equipment. ACS Appl. Nano Mater. 2021, 4, 4153–4161. [Google Scholar] [CrossRef]
- Evans, A.M.; Giri, A.; Sangwan, V.K.; Xun, S.; Bartnof, M.; Torres-Castanedo, C.G.; Balch, H.B.; Rahn, M.S.; Bradshaw, N.P.; Vitaku, E.; et al. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat. Mater. 2021, 20, 1142–1148. [Google Scholar]
- Liang, C.B.; Qiu, H.; Han, Y.Y.; Gu, H.; Song, P.; Wang, L.; Kong, J.; Cao, D.; Gu, J. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733. [Google Scholar] [CrossRef]
- Li, J.C.; Li, F.Z.; Zhao, X.Y.; Zhang, W.; Li, S.; Lu, Y.; Zhang, L. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Appl. Electron. Mater. 2020, 2, 1661–1669. [Google Scholar] [CrossRef]
- Liu, Z.D.; Chen, Y.P.; Li, Y.F.; Dai, W.; Yan, Q.; Alam, F.E.; Du, S.; Wang, Z.; Nishimura, K.; Jiang, N.; et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 2019, 11, 17600–17606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.W.; Hu, R.C.; Chen, M.Y.; Dong, J.; Xiao, B.; Wang, Q.; Wang, H. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 2020, 397, 1–7. [Google Scholar] [CrossRef]
- Chen, X.L.; Lim, J.S.K.; Yan, W.L.; Guo, F.; Liang, Y.N.; Chen, H.; Lambourne, A.; Hu, X. Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 2020, 12, 16987–16996. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.D. Study on the Mechanics of Foam Aluminum—Hollow Glass Microbeads/Epoxy Composites. Master’s Thesis, Yanshan University, Qinhuangdao, China, December 2020. [Google Scholar]
- Aslani, F.; Wang, L.N. Fabrication and characterization of an engineered cementitious composite with enhanced fire resistance performance. J. Clean. Prod. 2019, 221, 202–214. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Qin, Q.H. Modelling and characterization of effective thermal conductivity of single hollow glass microsphere and its powder. Materials (Basel) 2018, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Wu, S.Y.; Sun, Y.G. Hollow-structured materials for thermal insulation. Adv. Mater. 2019, 31, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Schiffres, S.N.; Kim, K.H.; Hu, L.; McGaughey, A.J.; Islam, M.F.; Malen, J.A. Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv. Funct. Mater. 2012, 22, 5251–5258. [Google Scholar] [CrossRef]
- Chen, G. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons; Oxford University Press: Oxford, UK, 2005; pp. 1–556. [Google Scholar]
- Cheng, T.; Chen, C.; Wang, L.; Zhang, X.; Ye, C.H.; Deng, Q.; Chen, G. Synthesis of Fly Ash Magnetic Glass Microsphere@BiVO4 and Its Hybrid Action of Visible-Light Photocatalysis and Adsorption Process. Pol. J. Environ. Stud. 2021, 30, 2027–2040. [Google Scholar] [CrossRef]
- Hu, Y.; Mei, R.; An, Z.; Zhang, J. Silicon rubber/hollow glass microsphere composites: Influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos. Sci. Technol. 2013, 79, 64–69. [Google Scholar] [CrossRef]
- Ren, S.; Guo, A.R.; Dong, X.; Tao, X.; Xu, X.; Zhang, J.; Geng, H.; Liu, J. Preparation and characteristic of a temperature resistance buoyancy material through a Gelcasting process. Chem. Eng. J. 2016, 288, 59–69. [Google Scholar] [CrossRef]
- Li, P.X.; Zheng, W.; Yu, X.Y.; Zhang, J. The preparation and performance of hollow glass microbead modified epoxy resin. Chin. J. Colloid Polym. 2020, 38, 7–10. [Google Scholar]
- Yung, K.C.; Zhu, B.L.; Yue, T.M.; Xie, C.S. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol. 2009, 69, 260–264. [Google Scholar]
- Borges, T.E.; Almeida, J.H.S.; Amico, S.C.; Amado, F.D. Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: Preparation and properties. Polym. Bull. 2017, 74, 1979–1993. [Google Scholar] [CrossRef]
- Wouterson, E.M.; Boey, F.Y.; Hu, X.; Wong, S.C. Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures. Sciencedirect 2005, 65, 1840–1850. [Google Scholar] [CrossRef]
- Gupta, N.; Pinisetty, D. A Review of Thermal Conductivity of Polymer Matrix Syntactic Foams-Effect of Hollow Particle Wall Thickness and Volume Fraction. JOM 2013, 65, 234–245. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam. Compos. Sci. Technol. 2010, 70, 1265–1271. [Google Scholar] [CrossRef]
- Choi, M.H.; Jeon, B.H.; Chung, I.J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer 2000, 41, 3243–3252. [Google Scholar] [CrossRef]
- Afolabi, L.O.; Ariff, Z.M.; Hashim, S.F.S.; Alomayri, T.; Mahzan, S.; Kamarudin, K.A.; Muhammad, I.D. Syntactic foams formulations, production techniques, and industry applications: A review. J. Mater. Res. Technol. 2020, 9, 10698–10718. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Guan, D.; Xu, M.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Isobe, T.; Hayakawa, Y.; Adachi, Y.; Uehara, R.; Matsushita, S.; Nakajima, A. Negative thermal expansion in α-Zr2SP2O12 based on phase transition-and framework-type mechanisms. NPG Asia Mater. 2020, 12, 1–7. [Google Scholar] [CrossRef]
- Dove, M.T.; Fang, H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 2016, 79, 1–50. [Google Scholar] [CrossRef]
- James, H.A. The density coefficient cubical expansion ice. Philos. Trans. R. Soc. A 1901, 198, 422–424. [Google Scholar]
- La Placa, S.J.; Post, B. Thermal expansion of ice. Acta Cryst. 1960, 13, 503–505. [Google Scholar] [CrossRef]
- Hojo, F.; Kagawa, H.; Takezawa, Y. Synthesis of a polymer composite with networked alpha-alumina fiber and evaluation of its thermal conductivity. J. Ceram. Soc. Jpn. 2011, 119, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Röttger, K.; Endriss, A.; Ihringer, J.; Doyle, S.; Kuhs, W.F. Lattice constants and thermal expansion of H2O and D2O ice ihbetween 10 and 265 K. Addendum 2012, 68, 91–98. [Google Scholar]
- Tanaka, H. Hydrogen bonds between water molecules: Thermal expansivity of ice and water. J. Mol. Liq. 2001, 90, 323–332. [Google Scholar] [CrossRef]
- Mary, T.A.; Evans, J.S.O.; Vogt, T.; Sleight, A.W. Negative thermal expansion from 0.3 to 1050 kelvin in zrw2o8. Science 1996, 272, 90–92. [Google Scholar] [CrossRef] [Green Version]
- Lakes, R.S. Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 1996, 15, 475–477. [Google Scholar] [CrossRef]
- Sleight, A.W. Thermal contraction. Endeavour 1995, 19, 64–68. [Google Scholar] [CrossRef]
- Ge, X.H.; Mao, Y.C.; Liu, X.S.; Cheng, Y.; Yuan, B.; Chao, M.; Liang, E. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12. Sci. Rep. 2016, 6, 1–8. [Google Scholar]
- Li, F.; Liu, X.S.; Song, W.B.; Yuan, B.; Cheng, Y.; Yuan, H.; Cheng, F.; Chao, M.; Liang, E. Phase transition, crystal water and low thermal expansion behavior of Al2-2x(ZrMg)(x)W3O12 center dot n(H2O). J. Solid. State Chem. 2014, 218, 15–22. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, J.C.; Guo, X.G.; Yang, P.; Wang, M.; Wu, Y.; Tong, P.; Lin, S.; Song, W.H.; Sun, Y.P. Thermal expansion coefficient and magnetically adjustable Mn0.983 CoGe/Epoxy Composites. J. Cryophys 2017, 039, 56–61. [Google Scholar]
- Huang, R.; Liu, Y.; Fan, W.; Tan, J.; Xiao, F.; Qian, L.; Li, L. Giant negative thermal expansion in NaZn13-Type La(Fe, Si, Co)13 compounds. J. Am. Chem. Soc. 2013, 135, 11469–11472. [Google Scholar] [CrossRef]
- Takenaka, K.; Kuzuoka, K. Sugimoto NJJoAP. In Matrix-Filler Interfaces and Physical Properties of Metal Matrix Composites with Negative Thermal Expansion Manganese Nitride; Woodhead Publishing: Sawston, UK, 2015; pp. 2355–2854. [Google Scholar]
- Wan, C.X.; Cao, T.; Chen, X.; Meng, L.; Li, L. Fabrication of polyethylene nanofibrous membranes by biaxial stretching. Mater. Today Commun. 2018, 17, 24–30. [Google Scholar] [CrossRef]
- Mehra, N.; Mu, L.W.; Ji, T.; Yang, X.; Kong, J.; Gu, J.; Zhu, J. Thermal Transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018, 12, 92–130. [Google Scholar] [CrossRef]
- Dong, J.; Cao, L.; Li, Y.; Wu, Z.; Teng, C. Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos. Sci. Technol. 2020, 196, 1–11. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Ruan, K.P.; Shi, X.T.; Yang, X.; Gu, J. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 1–25. [Google Scholar] [CrossRef]
- Yang, X.T.; Fan, S.G.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3d copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A 2020, 128, 1–9. [Google Scholar] [CrossRef]
- Zhang, R.C.; Huang, Z.R.; Huang, Z.H.; Zhong, M.; Zang, D.; Lu, A.; Lin, Y.; Millar, B.; Garet, G.; Turner, J.; et al. Uniaxially stretched polyethylene/boron nitride nanocomposite films with metal-like thermal conductivity. Compos. Sci. Technol. 2020, 196, 1–7. [Google Scholar] [CrossRef]
- An, F.; Li, X.F.; Min, P.; Li, H.; Dai, Z.; Yu, Z. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 2018, 126, 119–127. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, B.; Ge, Z.; Cheng, R.; Kang, L.; Zhou, X.; Zeng, J.; Xu, J.; Tian, X.; Gao, W.; et al. Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper-based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability. ACS. Appl. Mater. Interfaces 2019, 11, 39088–39099. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Z.B.; Wei, X.Z.; Qin, Y.; Song, G.; Li, L.; Li, M.; Dai, W.; Zhao, S.; Lin, C.; et al. Aluminum borate/boron nitride nanosheet fibers for enhancing the thermal conductivity of polymer composites. ACS Appl. Nano Mater. 2021, 4, 2136–2142. [Google Scholar] [CrossRef]
- Dai , G.; Li, L.; Xiao , H.; Zhai , M.; Shi , M. Influencing Factors and measuring method of the heat conducting performance of UHMWPE single fiber. J. Ind. Text 2018, 47, 1908–1924. [Google Scholar]
- Ronca, S.; Igarashi, T.; Forte, G.; Rastogi, S. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer 2017, 123, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.Y.; Shi, X.C.; Cheng, T.; Zeng, X.; Zheng, H. Numerical study on effective thermal conductivity of transparent electrospun polymer composite. Appl. Therm. Eng 2019, 160, 1–11. [Google Scholar] [CrossRef]
- Xu, Y.F.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured polymer films with metal-like thermal conductivity. Nat. Commun. 2019, 10, 1771. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Chiang, S.W.; Liu, M.; Liang, X.; Li, J.; Gan, L.; He, Y.; Li, B.; Kang, F.; Du, H. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3-D printing. Thermochim. Acta 2020, 690, 1–23. [Google Scholar] [CrossRef]
HGM | 0% | 2% | 4% | 6% | 8% |
---|---|---|---|---|---|
Thermal expansion coefficient | 4.39 × 10−5 | 2.79 × 10−5 | 2.75 × 10−5 | 2.79 × 10−5 | 2.39 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Dai, X.; Li, L.; Zhou, S.; Xue, W.; Liu, Y.; Liu, H. Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials. Polymers 2021, 13, 3185. https://doi.org/10.3390/polym13183185
Zhang Z, Dai X, Li L, Zhou S, Xue W, Liu Y, Liu H. Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials. Polymers. 2021; 13(18):3185. https://doi.org/10.3390/polym13183185
Chicago/Turabian StyleZhang, Zhongyuan, Xiaohan Dai, Le Li, Songsong Zhou, Wei Xue, Yunpeng Liu, and Hechen Liu. 2021. "Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials" Polymers 13, no. 18: 3185. https://doi.org/10.3390/polym13183185
APA StyleZhang, Z., Dai, X., Li, L., Zhou, S., Xue, W., Liu, Y., & Liu, H. (2021). Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials. Polymers, 13(18), 3185. https://doi.org/10.3390/polym13183185