Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Hybrid-Composite
2.3. Methodology
3. Experiments
4. Results and Discussion
4.1. Fracture Toughness-3 Point Bending Test (Load v/s Displacement Graphs)
4.2. Compliance v/s Crack Length
4.3. Fracture Toughness v/s Thickness Graph
5. Significance and Outcome
6. Conclusions
- The use of natural fibers is beneficial, as carbon fibers are harmful to the environment.
- The maximum fracture toughness value is obtained for the composite of 8 mm thickness, containing 35% of hemp fiber with coconut shell powder as the filler.
- An L9 orthogonal array is used as it is more suitable for analyzing the effects of three different factors at three different levels.
- The Taguchi technique of the L9 orthogonal array helps in the determination of the optimum levels of the tests conducted.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, Z.; Yousif, B.F.; Islam, M. Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos. Part B Eng. 2017, 116, 186–199. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Khanna, S. Investigation into features of fracture toughness of a transparent E-glass fiber reinforced polyester composites at extreme temperatures. Heliyon 2020, 6, e03986. [Google Scholar] [CrossRef]
- Saadati, Y.; Lebrun, G.; Bouvet, C.; Chatelain, J.F.; Beauchamp, Y. Study of translaminar fracture toughness of unidirectional flax/epoxy composite. Compos. Part C Open Access 2020, 1, 100008. [Google Scholar] [CrossRef]
- Madhusudhana, H.K.; Desai, B.; Venkatesha, C. Experimental Investigation on Parameter Effects on Fracture Toughness of Hemp Fiber Reinforced Polymer Composites. Mater. Today Proc. 2018, 5, 20002–20012. [Google Scholar] [CrossRef]
- Muneer Ahmed, M.; Dhakal, H.N.; Zhang, Z.Y.; Barouni, A.; Zahari, R. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Compos. Struct. 2021, 259, 113496. [Google Scholar] [CrossRef]
- Ghalia, M.A.; Abdelrasoul, A. Compressive and fracture toughness of natural and synthetic fiber-reinforced polymer. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2018; pp. 123–140. ISBN 9780081022924. [Google Scholar]
- Prasad, V.; Sekar, K.; Varghese, S.; Joseph, M.A. Evaluation of interlaminar fracture toughness and dynamic mechanical properties of nano TiO2 coated flax fibre epoxy composites. Polym. Test. 2020, 91, 106784. [Google Scholar] [CrossRef]
- Prasad, V.; Sekar, K.; Varghese, S.; Joseph, M.A. Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105505. [Google Scholar] [CrossRef]
- Archana, T.; Anand Kumar, S.; Elangovan, R.R.; Rammohan, Y.S.; Dumpala, R.; Ratna Sunil, B.; Kumar, R.K. Fracture toughness and fatigue behavior of spider silk and S-glass epoxy composites: An FEM approach. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 5, pp. 2627–2634. [Google Scholar]
- Silva, R.V.; Spinelli, D.; Bose Filho, W.W.; Claro Neto, S.; Chierice, G.O.; Tarpani, J.R. Fracture toughness of natural fibers/castor oil polyurethane composites. Compos. Sci. Technol. 2006, 66, 1328–1335. [Google Scholar] [CrossRef]
- Kalagi, G.; Buradi, A.; Kaladgi, A.R.; Madhusudhana, H.K.; Udaya Prasanna, H.; Yateesh Yadav, R.; Afzal, A.; Ahamed Saleel, C. Erosion wear behavior of glass fiber hybridized flax and sisal fabric hybrid composites with taguchi experimental design. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Ding, Y.; Zeng, W.; Wang, Q.; Zhang, Y. Topographical analysis of fractured surface roughness of macro fiber reinforced concrete and its correlation with flexural toughness. Constr. Build. Mater. 2020, 235, 117466. [Google Scholar] [CrossRef]
- Ansari, M.T.A.; Singh, K.K.; Azam, M.S. Fatigue damage analysis of fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2018, 37, 636–654. [Google Scholar] [CrossRef]
- Petermann, J.; Plumtree, A. Unified fatigue failure criterion for unidirectional laminates. Compos. Part A Appl. Sci. Manuf. 2001, 32, 107–118. [Google Scholar] [CrossRef]
- Noaman, A.T.; Abu Bakar, B.H.; Akil, H.M.; Alani, A.H. Fracture characteristics of plain and steel fibre reinforced rubberized concrete. Constr. Build. Mater. 2017, 152, 414–423. [Google Scholar] [CrossRef]
- Rajasekar, R.B.; Daniel Selvakumar, J.V.; Fathima, P.; Bala Akash, A. Fracture Toughness on GFRP with Multi Fillers. Mater. Today Proc. 2018, 5, 24486–24496. [Google Scholar] [CrossRef]
- Adak, N.C.; Chhetri, S.; Kuila, T.; Murmu, N.C.; Samanta, P.; Lee, J.H. Effects of hydrazine reduced graphene oxide on the inter-laminar fracture toughness of woven carbon fiber/epoxy composite. Compos. Part B Eng. 2018, 149, 22–30. [Google Scholar] [CrossRef]
- Kim, S.H.; Heo, Y.J.; Park, M.; Min, B.G.; Rhee, K.Y.; Park, S.J. Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites. Compos. Part B Eng. 2018, 153, 9–16. [Google Scholar] [CrossRef]
- Alshabib, A.; Silikas, N.; Watts, D.C. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent. Mater. 2019, 35, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Lassila, L.; Keulemans, F.; Säilynoja, E.; Vallittu, P.K.; Garoushi, S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dent. Mater. 2018, 34, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Satish, G.J.; Madhusudhana, H.K.; Nishant, B.H.; Kotturshettar, B.B. Optimising cutting parameters in boring operation for C45 steel. IOP Conf. Ser. Mater. Sci. Eng. 2020, 872, 012080. [Google Scholar] [CrossRef]
- Almansour, F.A.; Dhakal, H.N.; Zhang, Z.Y. Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Compos. Struct. 2017, 168, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Petrović, J.M.; Bekrić, D.Ž.; Vujičić, I.A.T.; Dimić, I.D.; Putić, S.S. Microstructural characterization of glass-epoxy composites subjected to tensile testing. Acta Period. Technol. 2013, 44, 151–162. [Google Scholar] [CrossRef] [Green Version]
Materials | Suppliers |
---|---|
Hemp fiber | D K Enterprises Hubli, 580031, Karnataka, India. |
Epoxy Resin Lapox L12 Epoxy Hardener Lapoxy K6 | Yuje Enterprises Bangalore, 560003, Karnataka, India. |
Coconut Shell Powder, | Kasturi Coconut Processing, Bangalore, 526160, Karnataka, India. |
Banana Fiber | Sindhu Enterprises, Maruti Nagar, Bangalore, 560068, Karnataka, India. |
Saw Dust Powder | Zayd Solutions Bangalore, 560084, Karnataka, India. |
Properties | Value |
---|---|
Tensile Strength | 68–80 Mpa |
Specific Strength | 56.6–66.6 kPa m3/kg |
Elastic Modulus | 2.9–3.2 MPa |
Deformation | 5%–7% |
Density | 1.2 g/cc |
Parameters | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Hemp fiber content (%) | 35 | 30 | 25 |
Banana fiber content (%) | 5 | 5 | 5 |
Coconut shell powder (%) | 5 | 5 | 5 |
Sawdust (%) | 5 | 5 | 5 |
Epoxy resin (%) | 60 | 65 | 70 |
Thickness (mm) | 8 | 9 | 10 |
Experimental Trial | Parameter 1 | Parameter 2 | Parameter 3 |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 2 |
5 | 2 | 2 | 3 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 3 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 2 |
Sl. No. | Resin (%) | Hemp Fiber (%) | Thickness (mm) | Fracture Toughness (MPa.√m) |
---|---|---|---|---|
1 | 60 | 35(B) * | 8 | 204.37 |
2 | 60 | 35(C) * | 9 | 208.91 |
3 | 60 | 35(S) * | 10 | 138.97 |
4 | 65 | 30(B) * | 9 | 177.12 |
5 | 65 | 30(C) * | 10 | 181.89 |
6 | 65 | 30(S) * | 8 | 176.27 |
7 | 70 | 25(B) * | 10 | 138.97 |
8 | 70 | 25(C) * | 8 | 242.69 |
9 | 70 | 25(S) * | 9 | 136.25 |
Source | Degrees of Freedom | Sum of Squares | Mean Sum of Squares | F Ratio | p Value | % Contribution |
---|---|---|---|---|---|---|
Thickness in mm | 2 | 10.6043 | 5.3021 | 24.67 | 0.039 | 42.21 |
Resin content in % | 2 | 0.9393 | 0.4697 | 2.19 | 0.314 | 3.73 |
Fiber content in % | 2 | 13.1487 | 6.5774 | 30.59 | 0.032 | 52.33 |
Error | 2 | 0.4298 | 0.2149 | 1.71 | ||
Total | 8 | 25.1221 |
Level | Resin Content in % | Fiber Content in % | Thickness in mm |
---|---|---|---|
1 | 45.16 | 44.68 | 46.28 |
2 | 45.03 | 46.43 | 44.68 |
3 | 44.42 | 43.49 | 43.64 |
Delta | 0.74 | 2.94 | 2.64 |
Rank | 3 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhusudhana, H.K.; Kumar, M.P.; Patil, A.Y.; Keshavamurthy, R.; Khan, T.M.Y.; Badruddin, I.A.; Kamangar, S. Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method. Polymers 2021, 13, 3013. https://doi.org/10.3390/polym13173013
Madhusudhana HK, Kumar MP, Patil AY, Keshavamurthy R, Khan TMY, Badruddin IA, Kamangar S. Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method. Polymers. 2021; 13(17):3013. https://doi.org/10.3390/polym13173013
Chicago/Turabian StyleMadhusudhana, H. K., M. Prasanna Kumar, Arun Y. Patil, R. Keshavamurthy, T. M. Yunus Khan, Irfan Anjum Badruddin, and Sarfaraz Kamangar. 2021. "Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method" Polymers 13, no. 17: 3013. https://doi.org/10.3390/polym13173013
APA StyleMadhusudhana, H. K., Kumar, M. P., Patil, A. Y., Keshavamurthy, R., Khan, T. M. Y., Badruddin, I. A., & Kamangar, S. (2021). Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method. Polymers, 13(17), 3013. https://doi.org/10.3390/polym13173013