Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Heat-Treated TNRs
2.2. Preparation of Au-TNR Hybrid Nanoparticles
2.3. Preparation of Au-TNR/PVDF Nanocomposites
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Zhang, N.; Huang, C.; Ren, K.; Zhang, Q.M. Microstructure and electromechanical properties of carbon nanotube/ poly(vinylidene fluoride—trifluoroethylene—chlorofluoroethylene) composites. Adv. Mater. 2005, 17, 1897–1901. [Google Scholar] [CrossRef]
- Beier, C.W.; Sanders, J.M.; Brutchey, R.L. Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. J. Phys. Chem. C 2013, 117, 6958–6965. [Google Scholar] [CrossRef]
- Thakur, V.K.; Gupta, R.K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Thomas, P.; Varughese, K.T.; Dwarakanath, K.; Varma, K.B.R. Dielectric properties of poly(vinylidene fluoride)/cacu3ti4o12 composites. Compos. Sci. Technol. 2010, 70, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Niu, Y.; Zhou, Y.; Bai, Y.; Wang, H.; Randall, C. Nanocomposites of surface-modified batio3nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 2013, 96, 2519–2524. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, P.; Xie, L. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 2009, 95, 242901. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Dang, Z.-M. Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl. Phys. Lett. 2005, 87, 042903. [Google Scholar] [CrossRef]
- Moharana, S.; Mahaling, R.N. Preparation and properties of benzoxazine (ba) based bifeo3-poly(vinylidene fluoride) (pvdf) composites: Enhanced dielectric constant and suppressed loss. Polym. Plast. Technol. Mater. 2021, 60, 1122–1134. [Google Scholar]
- Kishor Kumar, M.J.; Kalathi, J.T. Investigation on the dielectric performance of pvdf-hfp/lzo composites. J. Alloy. Compd. 2020, 843, 155889. [Google Scholar]
- Zhang, Y.; Wang, W.; Zhang, J.; Ni, Y. Dielectric relaxation processes in pvdf composite. Polym. Test. 2020, 91, 106801. [Google Scholar] [CrossRef]
- Thomas, P.; Satapathy, S.; Dwarakanath, K.; Varma, K.B.R. Dielectric properties of poly(vinylidene fluoride)/cacu3ti4o12 nanocrystal composite thick films. Express Polym. Lett. 2010, 4, 632–643. [Google Scholar] [CrossRef]
- Amaral, F.; Rubinger, C.P.L.; Henry, F.; Costa, L.C.; Valente, M.A.; Barros-Timmons, A. Dielectric properties of polystyrene–ccto composite. J. Non Cryst. Solids 2008, 354, 5321–5322. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Li, Y.; Cheng, Z.Y.; Brewer, J.C. Preparation process and dielectric properties of ba0.5sr0.5tio3–p(vdf–ctfe) nanocomposites. Compos. Part B Eng. 2014, 56, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wang, H.; Xiang, F.; Liu, W.; Yang, H. Surface functionalized ba0.6sr0.4tio3 /poly(vinylidene fluoride) nanocomposites with significantly enhanced dielectric properties. Appl. Phys. Lett. 2009, 95, 202904. [Google Scholar] [CrossRef]
- Su, Y.-L.; Sun, C.; Zhang, W.-Q.; Huang, H. Fabrication and dielectric properties of na0.5bi0.5cu3ti4o12/poly(vinylidene fluoride) composites. J. Mater. Sci. 2013, 48, 8147–8152. [Google Scholar] [CrossRef]
- Dang, Z.M.; Lin, Y.H.; Nan, C.W. Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 2003, 15, 1625–1629. [Google Scholar] [CrossRef]
- Zhang, L.; Bass, P.; Cheng, Z.Y. Revisiting the percolation phenomena in dielectric composites with conducting fillers. Appl. Phys. Lett. 2014, 105, 042905. [Google Scholar] [CrossRef]
- Begum, S.; Ullah, H.; Kausar, A.; Siddiq, M.; Aleem, M.A. Fabrication of epoxy functionalized mwcnts reinforced pvdf nanocomposites with high dielectric permittivity, low dielectric loss and high electrical conductivity. Compos. Sci. Technol. 2018, 167, 497–506. [Google Scholar] [CrossRef]
- Audoit, J.; Laffont, L.; Lonjon, A.; Dantras, E.; Lacabanne, C. Percolative silver nanoplates/pvdf nanocomposites: Bulk and surface electrical conduction. Polymer 2015, 78, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, T.; Fang, M.; Wang, C.; Xiao, Y.; Pu, Y. Enhancement of dielectric and electrical properties in bfn/ni/pvdf three-phase composites. Compos. Sci. Technol. 2017, 146, 139–146. [Google Scholar] [CrossRef]
- Yang, W.; Yu, S.; Sun, R.; Ke, S.; Huang, H.; Du, R. Electrical modulus analysis on the ni/ccto/pvdf system near the percolation threshold. J. Phys. D Appl. Phys. 2011, 44, 475305. [Google Scholar] [CrossRef]
- Dang, Z.M.; Shen, Y.; Nan, C.W. Dielectric behavior of three-phase percolative ni–batio3/polyvinylidene fluoride composites. Appl. Phys. Lett. 2002, 81, 4814–4816. [Google Scholar] [CrossRef]
- Su, Y.; Gu, Y.; Feng, S. Composites of nbcto/mwcnts/pvdf with high dielectric permittivity and low dielectric loss. J. Mater. Sci. Mater. Electron. 2017, 29, 2416–2420. [Google Scholar] [CrossRef]
- Su, Y.; Gu, Y.; Li, H.; Geng, F. Ag-nbcto-pvdf composites with enhanced dielectric properties. Mater. Lett. 2016, 185, 208–210. [Google Scholar] [CrossRef]
- Luo, S.; Yu, S.; Sun, R.; Wong, C.P. Nano ag-deposited batio3 hybrid particles as fillers for polymeric dielectric composites: Toward high dielectric constant and suppressed loss. ACS Appl. Mater. Interfaces 2014, 6, 176–182. [Google Scholar] [CrossRef]
- Arbatti, M.; Shan, X.; Cheng, Z.Y. Ceramic–polymer composites with high dielectric constant. Adv. Mater. 2007, 19, 1369–1372. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Withers, R.L.; Frankcombe, T.J.; Noren, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Homes, C.C.; Vogt, T. Colossal permittivity materials: Doping for superior dielectrics. Nat. Mater. 2013, 12, 782–783. [Google Scholar] [CrossRef]
- Tuichai, W.; Danwittayakul, S.; Chanlek, N.; Thongbai, P. Nonlinear current-voltage and giant dielectric properties of al3+ and ta5+ co-doped tio2 ceramics. Mater. Res. Bull. 2019, 116, 137–142. [Google Scholar] [CrossRef]
- Tse, M.-Y.; Wei, X.; Wong, C.-M.; Huang, L.-B.; Lam, K.-H.; Dai, J.; Hao, J. Enhanced dielectric properties of colossal permittivity co-doped tio2/polymer composite films. RSC Adv. 2018, 8, 32972–32978. [Google Scholar] [CrossRef] [Green Version]
- Kim, K. Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with rutile tio2 nanoparticles. Solid State Ion. 2003, 161, 121–131. [Google Scholar] [CrossRef]
- An, N.; Liu, H.; Ding, Y.; Zhang, M.; Tang, Y. Preparation and electroactive properties of a pvdf/nano-tio2 composite film. Appl. Surf. Sci. 2011, 257, 3831–3835. [Google Scholar] [CrossRef]
- Chen, X.; Liang, F.; Lu, W.; Zhao, Y.; Fan, G.; Wang, X. Improved dielectric properties of ag@tio2/pvdf nanocomposites induced by interfacial polarization and modifiers with different carbon chain lengths. Appl. Phys. Lett. 2018, 112, 162902. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, L.; Lu, W.-Z.; Wan, Q.-X.; Fan, G.-F. Dielectric performance of polymer-based composites containing core-shell ag@tio2 nanoparticle fillers. Appl. Phys. Lett. 2016, 108, 072902. [Google Scholar] [CrossRef]
- Yang, D.; Huang, S.; Ruan, M.; Wu, Y.; Li, S.; Wang, H.; Zhang, J.; Ma, H.; Guo, W.; Zhang, L. Controllable dielectric performance of polymer composites via the coulomb-blockade effect with core–shell structured nano-particles. J. Mater. Chem. C 2017, 5, 7759–7767. [Google Scholar] [CrossRef]
- Xu, N.; Xiao, X.; Yang, H.; Yu, E.; Zhang, Q. Enhanced dielectric constant and suppressed dielectric loss of ternary composites based on ag-p(vdf-hfp) matrix and tio2 nanowires. Ceram. Int. 2016, 42, 12475–12481. [Google Scholar] [CrossRef]
- Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Phromviyo, N.; Thongbai, P.; Maensiri, S. High dielectric permittivity and suppressed loss tangent in pvdf polymer nanocomposites using gold nanoparticle–deposited batio3 hybrid particles as fillers. Appl. Surf. Sci. 2018, 446, 236–242. [Google Scholar] [CrossRef]
- Kum-onsa, P.; Chanlek, N.; Putasaeng, B.; Thongbai, P. Improvement in dielectric properties of poly(vinylidene fluoride) by incorporation of au–bifeo3 hybrid nanoparticles. Ceram. Int. 2020, 46, 17272–17279. [Google Scholar] [CrossRef]
- Pramanik, G.; Humpolickova, J.; Valenta, J.; Kundu, P.; Bals, S.; Bour, P.; Dracinsky, M.; Cigler, P. Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale 2018, 10, 3792–3798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Sun, C.; Yu, M.; Qin, Y.; Wang, J.; Kim, M.; Zheng, J. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric au (i) thiolates. J. Phys. Chem. C Nanomater. Interfaces 2010, 114, 7727–7732. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Fan, H.; Xu, J.; Liu, Z.; Zhao, Y. Colossal permittivity and impedance analysis of niobium and aluminum co-doped tio2 ceramics. RSC Adv. 2016, 6, 48708–48714. [Google Scholar] [CrossRef]
- Ribeiro, C.; Costa, C.M.; Correia, D.M.; Nunes-Pereira, J.; Oliveira, J.; Martins, P.; Gonçalves, R.; Cardoso, V.F.; Lanceros-Méndez, S. Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat. Protoc. 2018, 13, 681–704. [Google Scholar] [CrossRef]
- Kumar, S.; Supriya, S.; Kar, M. Enhancement of dielectric constant in polymer-ceramic nanocomposite for flexible electronics and energy storage applications. Compos. Sci. Technol. 2018, 157, 48–56. [Google Scholar] [CrossRef]
- Ren, L.; Meng, X.; Zha, J.-W.; Dang, Z.-M. Coulomb block effect inducing distinctive dielectric properties in electroless plated barium titanate@silver/poly(vinylidene fluoride) nanocomposites. RSC Adv. 2015, 5, 65167–65174. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Lin, J.; Yang, W.; Li, H.; Wen, Y. Interfacial polarity modulation of kta0.5nb0.5o3 nanoparticles and its effect on dielectric loss and breakdown strength of poly(vinylidene fluoride) nanocomposites with high permittivity. J. Phys. Chem. C 2016, 120, 28423–28431. [Google Scholar] [CrossRef]
- Song, Y.; Shen, Y.; Hu, P.; Lin, Y.; Li, M.; Nan, C.W. Significant enhancement in energy density of polymer composites induced by dopamine-modified ba0.6sr0.4tio3 nanofibers. Appl. Phys. Lett. 2012, 101, 152904. [Google Scholar] [CrossRef]
- Dang, Z.-M.; You, S.-S.; Zha, J.-W.; Song, H.-T.; Li, S.-T. Effect of shell-layer thickness on dielectric properties in ag@tio2core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride) composites. Phys. Status Solidi A 2010, 207, 739–742. [Google Scholar] [CrossRef]
- Lopes, A.C.; Costa, C.M.; Serra, R.S.i.; Neves, I.C.; Ribelles, J.L.G.; Lanceros-Méndez, S. Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/nay zeolite composites. Solid State Ion. 2013, 235, 42–50. [Google Scholar] [CrossRef]
- Chen, G.; Yang, W.; Lin, J.; Wang, X.; Li, D.; Wang, Y.; Liang, M.; Ding, W.; Li, H.; Lei, Q. Geometrical shape adjustment of kta0.5nb0.5o3 nanofillers for tailored dielectric properties of kta0.5nb0.5o3/pvdf composite. J. Mater. Chem. C 2017, 5, 8135–8143. [Google Scholar] [CrossRef]
- Fang, F.; Yang, W.; Yu, S.; Luo, S.; Sun, R. Mechanism of high dielectric performance of polymer composites induced by batio3-supporting ag hybrid fillers. Appl. Phys. Lett. 2014, 104, 132909. [Google Scholar] [CrossRef]
Sample | fAu | fTNRs | fAu‒TNRs | ε′ | tanδ | σac (10−11 S·cm−1) |
---|---|---|---|---|---|---|
PVDF | 0 | 0 | 0 | 10.8 | 0.020 | 4.1 |
Au-TNR/PVDF-1 | 0.005 | 0.089 | 0.094 | 29.1 | 0.012 | 20.3 |
Au-TNR/PVDF-2 | 0.010 | 0.206 | 0.216 | 37.1 | 0.028 | 59.1 |
Au-TNR/PVDF-3 | 0.013 | 0.281 | 0.294 | 53.8 | 0.062 | 188.6 |
Au-TNR/PVDF-4 | 0.016 | 0.367 | 0.383 | 57.7 | 0.075 | 242.8 |
Au-TNR/PVDF-5 | 0.018 | 0.474 | 0.492 | 156.7 | 0.048 | 427.7 |
Au-TNR/PVDF-6 | 0.021 | 0.603 | 0.624 | 226.3 | 0.052 | 657.6 |
TNR/PVDF | 0 | 0.5 | 0 | 65.9 | 0.028 | 103.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kum-onsa, P.; Chanlek, N.; Manyam, J.; Thongbai, P.; Harnchana, V.; Phromviyo, N.; Chindaprasirt, P. Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance. Polymers 2021, 13, 2064. https://doi.org/10.3390/polym13132064
Kum-onsa P, Chanlek N, Manyam J, Thongbai P, Harnchana V, Phromviyo N, Chindaprasirt P. Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance. Polymers. 2021; 13(13):2064. https://doi.org/10.3390/polym13132064
Chicago/Turabian StyleKum-onsa, Pornsawan, Narong Chanlek, Jedsada Manyam, Prasit Thongbai, Viyada Harnchana, Nutthakritta Phromviyo, and Prinya Chindaprasirt. 2021. "Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance" Polymers 13, no. 13: 2064. https://doi.org/10.3390/polym13132064
APA StyleKum-onsa, P., Chanlek, N., Manyam, J., Thongbai, P., Harnchana, V., Phromviyo, N., & Chindaprasirt, P. (2021). Gold-Nanoparticle-Deposited TiO2 Nanorod/Poly(Vinylidene Fluoride) Composites with Enhanced Dielectric Performance. Polymers, 13(13), 2064. https://doi.org/10.3390/polym13132064