Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. Characterization Techniques
3. Results and Discussion
3.1. Morphology of Crystallized Polymer on Various Nanofillers
3.1.1. Polymer Crystal Structure on Carbon-Based Nanofillers
3.1.2. Polymer Crystal Structure on Clay-Based Nanofillers
3.2. X-ray Diffraction
3.3. Chemical Structure Analysis of Crystallized Polymer by FTIR
3.3.1. Carbon-Based Nanofillers
3.3.2. Clay-Based Nanofillers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbolaghi, S.; Abbaspoor, S.; Abbasi, F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog. Polym. Sci. 2018, 81, 22–79. [Google Scholar] [CrossRef]
- Depan, D.; Hebert, B.; Conlin, A.; Chirdon, W.; Khattab, A. Pressure-induced crystallization of low density polyethylene on carbon nanotubes and carbon nanofibers. Polym. Compos. 2016, 39, 192–200. [Google Scholar] [CrossRef]
- Leydecker, T.; Eredia, M.; Liscio, F.; Milita, S.; Melinte, G.; Ersen, D.; Sommer, M.; Ciesielski, A.; Samori, P. Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances. Carbon. 2018, 130, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Punetha, V.D.; Rana, S.; Yoo, H.Y.; Chaurasia, A.; McLeskey, J.T.; Ramaswamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Bhattacharyya, A.R.; Sreckumar, T.V.; Liu, T.; Kumar, S.; Ericson, L.M.; Hauge, R.H.; Smalley, R.E. Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite. Polymer 2003, 44, 2373–2377. [Google Scholar] [CrossRef]
- Grady, B.P.; Pompeo, F.; Shambaugh, R.L.; Resasco, D.E. Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2002, 106, 5852–5858. [Google Scholar] [CrossRef]
- Haggenmueller, R.; Fischer, J.; Winey, K.I. Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Nucleating and Templating Polyethylene Crystallites. Macromolecules 2006, 39, 2964–2971. [Google Scholar] [CrossRef] [Green Version]
- Carosio, F.; Kochumalayi, J.; Cuttica, F.; Camino, G.; Berglund, L. Oriented clay nanopaper from biobased components-mechanism for superior fire protection properties. ACS Appl. Mater. Interfaces 2015, 7, 5847–5856. [Google Scholar] [CrossRef]
- Lu, H.; Liang, F.; Gou, J. Nanopaper Enabled Shape-Memory Nanocomposite with Vertically Aligned Nickel Nanostrand: Controlled Synthesis and Electrical Actuation. Soft Matter 2011, 7, 7416–7423. [Google Scholar] [CrossRef]
- Sinha Ray, S. Polylactide based bionanocomposites: A promising class of hybrid materials. Acc. Chem. Res. 2012, 45, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.Y.; Ray, S.S.; Okamooto, M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposites. Macromolecules 2003, 36, 7126–7131. [Google Scholar] [CrossRef]
- Seven, K.M.; Cogen, J.M.; Gilchrist, J.F. Nucleating agents for high-density polyethylene—A review. Polym. Eng. Sci. 2016, 56, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237. [Google Scholar] [CrossRef]
- Le, T.; Collazos, N.; Simoneaux, A.; Murru, S.; Depan, D.; Subramaniam, R. Statistical modelling and simulation of nanohybrid shish-kebab architecture of PE-b-PEG copolymers and carbon nanotubes. Phys. Chem. Chem. Phys. 2017, 19, 13348–13360. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, H.; Nam, J.; Suhr, J. Interfacial shear strength of reduced graphene oxide polymer composites. Carbon 2014, 77, 390–397. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Polymer/Carbon Nanotube Nano Composite Fibers—A Review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087. [Google Scholar] [CrossRef]
- Heeley, E.L.; Hughes, D.J.; Crabb, E.M.; Bowen, J.; Bikonda, O.; Mayoral, B.; Leung, S.; McNally, T. The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly (ethylene terphthalate) (PET) and multi-walled carbon nanotubes. Polymer 2017, 117, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Xu, Z. In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules 2010, 43, 6716–6723. [Google Scholar]
- Qui, Z.B.; Jing, X.J. Effect of Low Thermally Reduced Graphene Loadings on the Crystallization Kinetics and Morphology of Biodegradable Poly(3-hydroxybutyrate). Ind. Eng. Chem. Res. 2012, 51, 13686–13691. [Google Scholar]
- Graziano, A.; Dias, O.A.T.; Garcia, C.; Jaffer, S.; Tjong, J.; Sain, M. Non-isothermal crystallization behavior and thermal properties of polyethylene tuned by polypropylene and reinforced with reduced graphene oxide. Nanomaterials 2020, 10, 1428. [Google Scholar] [CrossRef]
- Graziano, A.; Garcia, C.; Jaffer, S.; Tjong, J.; Yang, W.; Sain, M. Functionally tuned nanolayered graphene as reinforcement of polyethylene nanocomposites for lightweight transportation industry. Carbon 2020, 169, 99–110. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Depan, D. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials. Phys. Chem. Chem. Phys. 2013, 15, 12988–12997. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Wang, B.; Li, Y.; Chen, H.; Zhang, L.; Wang, Z. Epitaxial crystallization of precisely bromine-substitutes polyethylene induced by carbon nanotubes and graphene. RSC Adv. 2017, 7, 17640–17649. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.; Matthew, H.; Christopher, L. Carbon nanotube induced polymer crystallization: The formation of nanohybrid shish-kebabs. Polymer 2009, 50, 953–965. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Dong, B.; Wang, B.; Shah, R.; Li, C.Y. Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules 2010, 43, 9918–9927. [Google Scholar] [CrossRef]
- Giannelis, E.P.; Krishnamoorti, R.; Manias, E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138, 108–147. [Google Scholar]
- Boz, E.; Wagener, K.B. Synthesis and Crystallization of Precision ADMET Polyolefins Containing Halogens. Macromolecules 2006, 39, 4437–4447. [Google Scholar] [CrossRef]
- Esmaeili, A.; Pourbabaee, A.A.; Alikhani, H.A.; Shabani, F.; Esmaeili, E. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Asperigillus niger in soil. PLoS ONE 2013, 8, e71720. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Qian, W.; Zhao, M.; Xu, G.; Nie, J.; Jia, X.; Wei, F. High-yield Synthesis of Nanohybrid Shish-kebab Polyethylene-carbon Nanotube Structure. Chin. J. Chem. Eng. 2013, 21, 37–43. [Google Scholar] [CrossRef]
- Hindeleh, A.M.; Johnson, D.J. Crystallinity and crystallite size measurement in polyamide and polyester fibers. Polymer 1978, 19, 27–32. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, G. The research of interface microdomain and corona-resistance characteristics of micro-nano-ZnO/LDPE. Polymers 2020, 12, 563. [Google Scholar] [CrossRef] [Green Version]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef] [Green Version]
- Bhuvana, S.; Prabakaran, M. Synthesis and Characterisation of Polyamide/Halloysite Nanocomposites Prepared by Solution Intercalation Method. Nanosci. Nanotechnol. 2014, 4, 44–51. [Google Scholar]
- Durmus, A.; Kasgoz, A.; Macosko, C.W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007, 48, 4492–4502. [Google Scholar] [CrossRef]
- Kundu, P.P.; Biswas, J.; Kim, H.; Choe, S. Influence of film preparation procedures on the crystallinity, morphology and mechanical properties of LLDPE films. Eur. Polym. J. 2010, 39, 5921–5928. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test. 2012, 31, 31–38. [Google Scholar] [CrossRef]
- Ochoa, M.; Collajos, N.; Le, T.; Sanders, M.; Singh, R.P.; Ramalingam, S.; Depan, D. Nanoellulose PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization. Carbohydr. Polym. 2017, 159, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Dogan, F.; Sirin, K.; Kolcu, F.; Kaya, I. Conducting polymer composites based on low density polyethylene doped with poly (aminonapthol sulfonic acid). J. Electrostat. 2018, 94, 85–93. [Google Scholar] [CrossRef]
- Baskaran, D.; Mays, J.W.; Bratcher, M.S. Non covalent and nonspecific molecular interactions of polymers with multi-walled carbon nanotubes. Chem. Mater. 2005, 17, 3389–3397. [Google Scholar] [CrossRef] [Green Version]
- Depan, D.; Misra, R.D.K. Hybrid nanoparticle architecture for cellular uptake and bioimaging: Direct crystallization of a polymer immobilized with magnetic nanoparticles: On carbon nanotubes. Nanoscale 2012, 4, 6325–6335. [Google Scholar] [CrossRef] [PubMed]
- Tjong, S.C.; Bao, S.P. Crystallization regime characterizations of exfoliated polyethylene/vermiculite nanocomposites. J. Polym. Sci. B Polym. Phys. 2005, 43, 253–263. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Girase, B.; Depan, D.; Shah, J.S. Hybrid nanoscale architecture for enhancement of antimicrobial activity: Immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv. Eng. Mater. 2012, 14, B93–B100. [Google Scholar] [CrossRef]
- Djomgoue, P.; Njopwouo, D. FTIR spectroscopy applied for surface clays characterization. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275–282. [Google Scholar]
- Agosti, E.; Zerbi, G.; Ward, I.M. Structure of the skin and core of ultradrawn polyethylene films by vibrational spectroscopy. Polymer 1992, 33, 4219–4229. [Google Scholar] [CrossRef]
- Painter, P.C.; Havens, J.; Hart, W.W.; Koenig, J.L. Fourier-transform IR spectroscopic investigation of polyethylene single-crystals. 1. Fine structure of CH2 rocking mode. J. Polym. Sci. Pol. Phys. 1977, 15, 1237–1246. [Google Scholar] [CrossRef]
- Huang, J.B.; Hong, J.W.; Urban, M.W. Attenuated total reflectance Fourier transform infrared studies of crystalline amorphous content on polyethylene surfaces. Polymer 1992, 33, 5173–5178. [Google Scholar] [CrossRef]
- Takenana, Y.; Miyaji, H.; Hoshino, A.; Tracz, A.; Jeszka, J.K.; Kucinska, I. Interface Structure of Epitaxial Polyethylene Crystal Grown on HOPG and MoS2 Substrates. Macromolecules 2004, 37, 9667–9669. [Google Scholar] [CrossRef]
- Xu, J.T.; Wang, Q.; Fan, Z.-Q. Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in-situ polymerization. Eur. Polym. J. 2005, 41, 3011–3017. [Google Scholar] [CrossRef]
- Dattelbaum, D.M.; Emmons, E.D.; Covington, A.M.; Stevens, L.L.; Velisavljevic, N.; Branch, B. High-pressure X-ray diffraction and vibrational spectroscopy of polyethylene: Evidence for a structural phase transition. Vibration. Spectroscop. 2020, 111, 103173. [Google Scholar] [CrossRef]
- Minus, M.L.; Chae, H.G.; Kumar, S. Polyethylene crystallization nucleated by carbon nanotubes. ACS Appl. Mater. Interfaces 2012, 4, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Srivastava, D. Structural Ordering in Nanotube Polymer Composites. Nano Lett. 2004, 4, 1949–1952. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depan, D.; Chirdon, W.; Khattab, A. Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers 2021, 13, 1558. https://doi.org/10.3390/polym13101558
Depan D, Chirdon W, Khattab A. Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers. 2021; 13(10):1558. https://doi.org/10.3390/polym13101558
Chicago/Turabian StyleDepan, Dilip, William Chirdon, and Ahmed Khattab. 2021. "Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers" Polymers 13, no. 10: 1558. https://doi.org/10.3390/polym13101558
APA StyleDepan, D., Chirdon, W., & Khattab, A. (2021). Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers, 13(10), 1558. https://doi.org/10.3390/polym13101558