Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.3. Characterization Techniques
3. Results and Discussion
3.1. Morphology of Crystallized Polymer on Various Nanofillers
3.1.1. Polymer Crystal Structure on Carbon-Based Nanofillers
3.1.2. Polymer Crystal Structure on Clay-Based Nanofillers
3.2. X-ray Diffraction
3.3. Chemical Structure Analysis of Crystallized Polymer by FTIR
3.3.1. Carbon-Based Nanofillers
3.3.2. Clay-Based Nanofillers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Agbolaghi, S.; Abbaspoor, S.; Abbasi, F. A comprehensive review on polymer single crystals—From fundamental concepts to applications. Prog. Polym. Sci. 2018, 81, 22–79. [Google Scholar] [CrossRef]
- Depan, D.; Hebert, B.; Conlin, A.; Chirdon, W.; Khattab, A. Pressure-induced crystallization of low density polyethylene on carbon nanotubes and carbon nanofibers. Polym. Compos. 2016, 39, 192–200. [Google Scholar] [CrossRef]
- Leydecker, T.; Eredia, M.; Liscio, F.; Milita, S.; Melinte, G.; Ersen, D.; Sommer, M.; Ciesielski, A.; Samori, P. Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances. Carbon. 2018, 130, 495–502. [Google Scholar] [CrossRef]
- Punetha, V.D.; Rana, S.; Yoo, H.Y.; Chaurasia, A.; McLeskey, J.T.; Ramaswamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Bhattacharyya, A.R.; Sreckumar, T.V.; Liu, T.; Kumar, S.; Ericson, L.M.; Hauge, R.H.; Smalley, R.E. Crystallization and Orientation Studies in Polypropylene/Single Wall Carbon Nanotube Composite. Polymer 2003, 44, 2373–2377. [Google Scholar] [CrossRef]
- Grady, B.P.; Pompeo, F.; Shambaugh, R.L.; Resasco, D.E. Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2002, 106, 5852–5858. [Google Scholar] [CrossRef]
- Haggenmueller, R.; Fischer, J.; Winey, K.I. Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Nucleating and Templating Polyethylene Crystallites. Macromolecules 2006, 39, 2964–2971. [Google Scholar] [CrossRef]
- Carosio, F.; Kochumalayi, J.; Cuttica, F.; Camino, G.; Berglund, L. Oriented clay nanopaper from biobased components-mechanism for superior fire protection properties. ACS Appl. Mater. Interfaces 2015, 7, 5847–5856. [Google Scholar] [CrossRef]
- Lu, H.; Liang, F.; Gou, J. Nanopaper Enabled Shape-Memory Nanocomposite with Vertically Aligned Nickel Nanostrand: Controlled Synthesis and Electrical Actuation. Soft Matter 2011, 7, 7416–7423. [Google Scholar] [CrossRef]
- Sinha Ray, S. Polylactide based bionanocomposites: A promising class of hybrid materials. Acc. Chem. Res. 2012, 45, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.Y.; Ray, S.S.; Okamooto, M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposites. Macromolecules 2003, 36, 7126–7131. [Google Scholar] [CrossRef]
- Seven, K.M.; Cogen, J.M.; Gilchrist, J.F. Nucleating agents for high-density polyethylene—A review. Polym. Eng. Sci. 2016, 56, 541–554. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237. [Google Scholar] [CrossRef]
- Le, T.; Collazos, N.; Simoneaux, A.; Murru, S.; Depan, D.; Subramaniam, R. Statistical modelling and simulation of nanohybrid shish-kebab architecture of PE-b-PEG copolymers and carbon nanotubes. Phys. Chem. Chem. Phys. 2017, 19, 13348–13360. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, H.; Nam, J.; Suhr, J. Interfacial shear strength of reduced graphene oxide polymer composites. Carbon 2014, 77, 390–397. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Polymer/Carbon Nanotube Nano Composite Fibers—A Review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087. [Google Scholar] [CrossRef]
- Heeley, E.L.; Hughes, D.J.; Crabb, E.M.; Bowen, J.; Bikonda, O.; Mayoral, B.; Leung, S.; McNally, T. The formation of a nanohybrid shish-kebab (NHSK) structure in melt-processed composites of poly (ethylene terphthalate) (PET) and multi-walled carbon nanotubes. Polymer 2017, 117, 208–219. [Google Scholar] [CrossRef]
- Gao, C.; Xu, Z. In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites. Macromolecules 2010, 43, 6716–6723. [Google Scholar]
- Qui, Z.B.; Jing, X.J. Effect of Low Thermally Reduced Graphene Loadings on the Crystallization Kinetics and Morphology of Biodegradable Poly(3-hydroxybutyrate). Ind. Eng. Chem. Res. 2012, 51, 13686–13691. [Google Scholar]
- Graziano, A.; Dias, O.A.T.; Garcia, C.; Jaffer, S.; Tjong, J.; Sain, M. Non-isothermal crystallization behavior and thermal properties of polyethylene tuned by polypropylene and reinforced with reduced graphene oxide. Nanomaterials 2020, 10, 1428. [Google Scholar] [CrossRef]
- Graziano, A.; Garcia, C.; Jaffer, S.; Tjong, J.; Yang, W.; Sain, M. Functionally tuned nanolayered graphene as reinforcement of polyethylene nanocomposites for lightweight transportation industry. Carbon 2020, 169, 99–110. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Depan, D. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials. Phys. Chem. Chem. Phys. 2013, 15, 12988–12997. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Wang, B.; Li, Y.; Chen, H.; Zhang, L.; Wang, Z. Epitaxial crystallization of precisely bromine-substitutes polyethylene induced by carbon nanotubes and graphene. RSC Adv. 2017, 7, 17640–17649. [Google Scholar] [CrossRef]
- Li, L.; Li, B.; Matthew, H.; Christopher, L. Carbon nanotube induced polymer crystallization: The formation of nanohybrid shish-kebabs. Polymer 2009, 50, 953–965. [Google Scholar] [CrossRef]
- Chen, X.; Dong, B.; Wang, B.; Shah, R.; Li, C.Y. Crystalline block copolymer decorated, hierarchically ordered polymer nanofibers. Macromolecules 2010, 43, 9918–9927. [Google Scholar] [CrossRef]
- Giannelis, E.P.; Krishnamoorti, R.; Manias, E. Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138, 108–147. [Google Scholar]
- Boz, E.; Wagener, K.B. Synthesis and Crystallization of Precision ADMET Polyolefins Containing Halogens. Macromolecules 2006, 39, 4437–4447. [Google Scholar] [CrossRef]
- Esmaeili, A.; Pourbabaee, A.A.; Alikhani, H.A.; Shabani, F.; Esmaeili, E. Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Asperigillus niger in soil. PLoS ONE 2013, 8, e71720. [Google Scholar] [CrossRef]
- Cui, C.; Qian, W.; Zhao, M.; Xu, G.; Nie, J.; Jia, X.; Wei, F. High-yield Synthesis of Nanohybrid Shish-kebab Polyethylene-carbon Nanotube Structure. Chin. J. Chem. Eng. 2013, 21, 37–43. [Google Scholar] [CrossRef]
- Hindeleh, A.M.; Johnson, D.J. Crystallinity and crystallite size measurement in polyamide and polyester fibers. Polymer 1978, 19, 27–32. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, G. The research of interface microdomain and corona-resistance characteristics of micro-nano-ZnO/LDPE. Polymers 2020, 12, 563. [Google Scholar] [CrossRef]
- Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204. [Google Scholar] [CrossRef]
- Bhuvana, S.; Prabakaran, M. Synthesis and Characterisation of Polyamide/Halloysite Nanocomposites Prepared by Solution Intercalation Method. Nanosci. Nanotechnol. 2014, 4, 44–51. [Google Scholar]
- Durmus, A.; Kasgoz, A.; Macosko, C.W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007, 48, 4492–4502. [Google Scholar] [CrossRef]
- Kundu, P.P.; Biswas, J.; Kim, H.; Choe, S. Influence of film preparation procedures on the crystallinity, morphology and mechanical properties of LLDPE films. Eur. Polym. J. 2010, 39, 5921–5928. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test. 2012, 31, 31–38. [Google Scholar] [CrossRef]
- Ochoa, M.; Collajos, N.; Le, T.; Sanders, M.; Singh, R.P.; Ramalingam, S.; Depan, D. Nanoellulose PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization. Carbohydr. Polym. 2017, 159, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Dogan, F.; Sirin, K.; Kolcu, F.; Kaya, I. Conducting polymer composites based on low density polyethylene doped with poly (aminonapthol sulfonic acid). J. Electrostat. 2018, 94, 85–93. [Google Scholar] [CrossRef]
- Baskaran, D.; Mays, J.W.; Bratcher, M.S. Non covalent and nonspecific molecular interactions of polymers with multi-walled carbon nanotubes. Chem. Mater. 2005, 17, 3389–3397. [Google Scholar] [CrossRef]
- Depan, D.; Misra, R.D.K. Hybrid nanoparticle architecture for cellular uptake and bioimaging: Direct crystallization of a polymer immobilized with magnetic nanoparticles: On carbon nanotubes. Nanoscale 2012, 4, 6325–6335. [Google Scholar] [CrossRef] [PubMed]
- Tjong, S.C.; Bao, S.P. Crystallization regime characterizations of exfoliated polyethylene/vermiculite nanocomposites. J. Polym. Sci. B Polym. Phys. 2005, 43, 253–263. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Girase, B.; Depan, D.; Shah, J.S. Hybrid nanoscale architecture for enhancement of antimicrobial activity: Immobilization of silver nanoparticles on thiol-functionalized polymer crystallized on carbon nanotubes. Adv. Eng. Mater. 2012, 14, B93–B100. [Google Scholar] [CrossRef]
- Djomgoue, P.; Njopwouo, D. FTIR spectroscopy applied for surface clays characterization. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275–282. [Google Scholar]
- Agosti, E.; Zerbi, G.; Ward, I.M. Structure of the skin and core of ultradrawn polyethylene films by vibrational spectroscopy. Polymer 1992, 33, 4219–4229. [Google Scholar] [CrossRef]
- Painter, P.C.; Havens, J.; Hart, W.W.; Koenig, J.L. Fourier-transform IR spectroscopic investigation of polyethylene single-crystals. 1. Fine structure of CH2 rocking mode. J. Polym. Sci. Pol. Phys. 1977, 15, 1237–1246. [Google Scholar] [CrossRef]
- Huang, J.B.; Hong, J.W.; Urban, M.W. Attenuated total reflectance Fourier transform infrared studies of crystalline amorphous content on polyethylene surfaces. Polymer 1992, 33, 5173–5178. [Google Scholar] [CrossRef]
- Takenana, Y.; Miyaji, H.; Hoshino, A.; Tracz, A.; Jeszka, J.K.; Kucinska, I. Interface Structure of Epitaxial Polyethylene Crystal Grown on HOPG and MoS2 Substrates. Macromolecules 2004, 37, 9667–9669. [Google Scholar] [CrossRef]
- Xu, J.T.; Wang, Q.; Fan, Z.-Q. Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in-situ polymerization. Eur. Polym. J. 2005, 41, 3011–3017. [Google Scholar] [CrossRef]
- Dattelbaum, D.M.; Emmons, E.D.; Covington, A.M.; Stevens, L.L.; Velisavljevic, N.; Branch, B. High-pressure X-ray diffraction and vibrational spectroscopy of polyethylene: Evidence for a structural phase transition. Vibration. Spectroscop. 2020, 111, 103173. [Google Scholar] [CrossRef]
- Minus, M.L.; Chae, H.G.; Kumar, S. Polyethylene crystallization nucleated by carbon nanotubes. ACS Appl. Mater. Interfaces 2012, 4, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Srivastava, D. Structural Ordering in Nanotube Polymer Composites. Nano Lett. 2004, 4, 1949–1952. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depan, D.; Chirdon, W.; Khattab, A. Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers 2021, 13, 1558. https://doi.org/10.3390/polym13101558
Depan D, Chirdon W, Khattab A. Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers. 2021; 13(10):1558. https://doi.org/10.3390/polym13101558
Chicago/Turabian StyleDepan, Dilip, William Chirdon, and Ahmed Khattab. 2021. "Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers" Polymers 13, no. 10: 1558. https://doi.org/10.3390/polym13101558
APA StyleDepan, D., Chirdon, W., & Khattab, A. (2021). Morphological and Chemical Analysis of Low-Density Polyethylene Crystallized on Carbon and Clay Nanofillers. Polymers, 13(10), 1558. https://doi.org/10.3390/polym13101558