Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MWCNT/PLA/PEG Nanocomposites
2.3. Measurement Setup
2.4. Nanocomposites Characterization
2.4.1. Tensile Properties Measurement
2.4.2. X-ray Diffraction (XRD)
2.4.3. Fourier Transform Infrared (FT-IR)
2.4.4. Thermogravimetric Analysis (TGA and DTG) Properties
2.4.5. Field Emission Scanning Electron Microscopy (FE-SEM)
3. Results and Discussion
3.1. X-ray Diffraction Analysis
3.2. FE-SEM Observation
3.3. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
3.4. Thermogravimetric Analysis
3.5. Mechanical Properties of the Nanocomposite
3.6. Dielectric Properties of MWCNT/PLA/PEG Nanocomposites
3.7. EMI Shielding Mechanism of Nanocomposites
3.7.1. Shielding Effectiveness
3.7.2. The Conductivity of MWCNT/PLA/PEG Nanocomposites
3.7.3. Power Balance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sykam, N.; Rao, G.M. Lightweight flexible graphite sheet for high-performance electromagnetic interference shielding. Mater. Lett. 2018, 233, 59–62. [Google Scholar] [CrossRef]
- Paul, C.R. Introduction to Electromagnetic Compatibility, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ahmad, A.F.; Abbas, Z.; Obaiys, S.J.; Ibrahim, N.A.; Zainuddin, M.F.; Salem, A. Permittivity properties of nickel zinc ferrite-oil palm empty fruit bunch-polycaprolactone composite. Procedia Chem. 2016, 19, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Vargas, B.R. Performance Analysis of Electromagnetic Interference Shielding based on Carbon Nanomaterials used in AMS/RF IC Design. In Performance Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design; IGI Global: Harrisburg, PA, USA, 2015; pp. 268–294. [Google Scholar] [CrossRef]
- Lu, S.; Chen, D.; Shao, J.; Bai, Y.; Tian, C.; Ma, K.; Wang, X. Electromagnetic interference shielding properties of graphene/MWCNT hybrid buck paper. Micro Nano Lett. 2018, 9, 1252–1254. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Du, X. Mechanical behaviour of self-assembled carbon nanotube reinforced nylon 6, 6 fibers. Compos. Sci. Technol. 2010, 9, 1401–1409. [Google Scholar] [CrossRef]
- Mohanty, F.; Swain, K.S. Carbon Nanotube Embedded Polymer Composite: Properties and Applications. Curr. Org. Chem. 2017, 14, 249–262. [Google Scholar] [CrossRef]
- Abdalhadi, D.M.; Abbas, Z.; Ahmad, A.F.; Matori, K.A.; Esa, F. Controlling the Properties of OPEFB/PLA Polymer Composite by Using Fe 2 O 3 for Microwave Applications. Fiber Polym. 2018, 19, 1513–1521. [Google Scholar] [CrossRef]
- Sungsanit, K.; Kao, N.; Bhattacharya, S.N. Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 2012, 52, 108–116. [Google Scholar] [CrossRef]
- Hu, Y.; Rogunova, M.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of poly (lactide)/poly (ethylene glycol) blends. Part 1. Poly (lactide) with low stereoregularity. Polymer 2003, 44, 5701–5710. [Google Scholar] [CrossRef]
- Pande, S.; Chaudhary, A.; Patel, D.; Singh, B.P.; Mathur, R.B. Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. Rsc Adv. 2014, 27, 13839–13849. [Google Scholar] [CrossRef] [Green Version]
- Rathore, D.K.; Prusty, R.K.; Kumar, D.S.; Ray, B.C. Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Compos. Part A Appl. Sci. Manuf. 2016, 84, 364–376. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Bryant, N. EMI shielding effects of carbon nanotubes on traditional EMI plastics. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Fort Lauderdale, FL, USA, 25–30 July 2010. [Google Scholar] [CrossRef]
- Huang, Y.; Li, N.; Ma, Y.; Du, F.; Li, F.; He, X.; Lin, X.; Gao, H.; Chen, Y. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 2007, 45, 1614–1621. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Du, F.; Li, F.; Guo, T.; Chen, Y. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 2007, 45, 821–827. [Google Scholar] [CrossRef]
- Agilent Technology. Agilent 85701B Software Calibration Kit; Agilent Technologies: Tokyo, Japan, 2010. [Google Scholar]
- Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H.; Zhang, Z. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768–777. [Google Scholar] [CrossRef]
- Tang, Q.L.; Zhu, Y.J.; Duan, Y.R.; Wang, Q.; Wang, K.W.; Cao, S.W.; Chen, F.; Wu, J. Porous nanocomposites of PEG-PLA/calcium phosphate: Room-temperature synthesis and its application in drug delivery. Dalton Trans. 2010, 39, 4435–4439. [Google Scholar] [CrossRef]
- Singh, A.P.; Gupta, B.K.; Mishra, M.; Chandra, A.; Mathur, R.B.; Dhawan, S.K. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 2013, 56, 86–96. [Google Scholar] [CrossRef]
- Jin, S.H.; Yoon, K.H.; Park, Y.B.; Bang, D.S. Properties of surface-modified multiwall carbon nanotube filled poly (ethylene terephthalate) composite films. J. Appl. Polym. Sci. 2008, 2, 1163–1168. [Google Scholar] [CrossRef]
- Kashi, S.; Gupta, R.K.; Baum, T.; Kao, N.; Bhattacharya, S.N. Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites. Mater. Des. 2016, 109, 68–78. [Google Scholar] [CrossRef]
- Park, S.G.; Abdal-Hay, A.; Lim, J.K. Biodegradable poly (lactic acid)/multiwalled carbon nanotube nanocomposite fabrication using casting and hot press techniques. Arch. Metall. Mater. 2015, 60, 1557–1559. [Google Scholar] [CrossRef] [Green Version]
- Bijarimin, M.; Sahrim, A.; Rozaidi, R. Mechanical, thermal and morphological properties of poly (lactic acid)/natural rubber nanocomposites. J. Reinf. Plast. Compos. 2013, 32, 1656–1667. [Google Scholar] [CrossRef]
- Chhetri, S.; Samanta, P.; Murmu, N.C.; Srivastava, S.K.; Kuila, T. Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites. AIMS Mater. Sci. 2016, 4, 61–74. [Google Scholar] [CrossRef]
- Silverajah, V.S.; Ibrahim, N.A.; Yunus, W.M.; Hassan, H.A.; Woei, C.B. A comparative study on the mechanical, thermal and morphological characterization of poly (lactic acid)/epoxidized palm oil blend. Int. J. Mol. Sci. 2012, 13, 5878–5898. [Google Scholar] [CrossRef] [Green Version]
- Saini, P.; Choudhary, V.; Singh, B.P.; Mathur, R.B.; Dhawan, S.K. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926. [Google Scholar] [CrossRef]
- Lu, M.G.; Lee, J.Y.; Shim, M.J.; Kim, S.W. Thermal degradation of film cast from aqueous polyurethane dispersions. J. Appl. Polym. Sci. 2002, 85, 2552–2558. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Abbas, Z.; Obaiys, S.J.; Zainuddin, M.F. Effect of untreated fiber loading on the thermal, mechanical, dielectric, and microwave absorption properties of polycaprolactone reinforced with oil palm empty fruit bunch biocomposites. Polym. Compos. 2018, 39, E1778–E1787. [Google Scholar] [CrossRef]
- Finkenstadt, V.; Liu, C.K.; Cooke, P.; Liu, L.; Willett, J. Mechanical Property characterization of plasticized sugar beet pulp and poly (lactic acid) green composites using acoustic emission and confocal microscopy. J. Polym. Environ. 2008, 16, 19–26. [Google Scholar] [CrossRef]
- Watts, P.C.P.; Ponnampalam, D.R.; Hsu, W.K.; Barnes, A.; Chambers, B. The complex permittivity of multi-walled carbon nanotube–polystyrene composite films in X-band. Chem. Phys. Lett. 2003, 378, 609–614. [Google Scholar] [CrossRef]
- Fahad, A.A.; Abbas, Z.; Shaari, A.H.; Jabbar, O.S.; Sa’ad Aliyu, U. Synthesis, thermal, dielectric, and microwave reflection loss properties of nickel oxide filler with natural fiber-reinforced polymer composite. J. Appl. Polym. Sci. 2019, 136, 46998. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Abbas, Z.; Obaiys, S.J.; Ibrahim, N.; Hashim, M.; Khaleel, H. Theoretical and Numerical Approaches for Determining the Reflection and Transmission Coefficients of OPEFB-PCL Composites at X-Band Frequencies. PLoS ONE 2015, 10, 0140505. [Google Scholar] [CrossRef]
- Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563–1568. [Google Scholar] [CrossRef]
- Ravindren, R.; Mondal, S.; Nath, K.; Das, N.C. Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. Part B-Eng. 2019. [Google Scholar] [CrossRef]
- Saini, P.; Arora, M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polym. Spec. Appl. 2012. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.B.; Li, Z.W.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z.H.; Tang, C.B.; Tan, P.K.; Deng, C.R.; Matitsine, S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203–259. [Google Scholar] [CrossRef]
- Folgueras, L.D.; Alves, M.A.; Rezende, M.C. Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: Measurement and simulation of their properties. JATM 2010, 2, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Phan, C.H.; Mariatti, M.; Koh, Y.H. Electromagnetic interference shielding performance of epoxy composites filled with multiwalled carbon nanotubes/manganese zinc ferrite hybrid fillers. J. Magn. Magn. Mater. 2016, 401, 472–478. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Aziz, S.A.; Abbas, Z.; Obaiys, S.J.; Matori, K.A.; Zaid, M.H.M.; Raad, H.K.; Aliyu, U.S.A. Chemically Reduced Graphene Oxide-Reinforced Poly (Lactic Acid)/Poly (Ethylene Glycol) Nanocomposites: Preparation, Characterization, and Applications in Electromagnetic Interference Shielding. Polymers 2019, 11, 661. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.R.; Narayanan, T.N.; Reena, M.A.P.; Anantharaman, M.R.; Srivastava, A.; Vajtai, R.; Ajayan, P.M. Ni filled flexible multi-walled carbon nanotube–polystyrene composite films as efficient microwave absorbers. Appl. Phys. Lett. 2011, 99, 113116. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Yu, L.; Sheng, L.; An, K.; Zhao, X. Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D Appl. Phys. 2012, 45, 235108. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Zhang, S.; Ni, Y.; Huang, J. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl. Surf. Sci. 2008, 254, 5766–5771. [Google Scholar] [CrossRef]
- Hoang, A.S. Electrical conductivity and electromagnetic interference shielding characteristics of multi-walled carbon nanotube filled polyurethane composite films. ANSN 2011, 2, 025007. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Electrical conductivity and electromagnetic interference shielding of multi-walled carbon nanotube filled polymer composites. MRS Proc. 2004, 858. [Google Scholar] [CrossRef]
- Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J. Polym. Res. 2013, 20, 169. [Google Scholar] [CrossRef]
- Shen, B.; Li, Y.; Zhai, W.; Zheng, W. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Choudhary, V. Electrical conductivity and shielding effectiveness of poly (trimethylene terephthalate)/multiwalled carbon nanotube composites. J. Mater. Sci. 2011, 46, 6416–6423. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, B.; Zheng, S.; Yang, J.; Zhang, D.; Cao, M. Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Appl. Phys. A 2015, 119, 379–386. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Z.H.; Kong, L.B.; Yin, W.Y.; Wang, S. Microwave tunable dielectric properties of multilayer CNT membranes for smart applications. Appl. Phys. A 2012, 108, 843–848. [Google Scholar] [CrossRef]
- Awang, Z.; Zaki, F.A.M.; Baba, N.H.; Zool fakar, A.S.; Bakar, R.A. A free-space method for complex permittivity measurement of bulk and thin film dielectrics at microwave frequencies. PROG Electromagn. Res. 2013, 51, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Xiang, C.; Pan, Y.; Liu, X.; Sun, X.; Shi, X.; Guo, J. Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl. Phys. Lett. 2005, 87, 123103. [Google Scholar] [CrossRef]
- Singh, B.P.; Choudhary, V.; Saini, P.; Pande, S.; Singh, V.N.; Mathur, R.B. Enhanced microwave shielding and mechanical properties of high loading MWCNT–epoxy composites. J. Nanopart. Res. 2013, 15, 1554. [Google Scholar] [CrossRef]
Sample | Weight % of PLA | Weight % of PEG | Weight % of MWCNTs | Mass (gm) MWCNT/PLA/PEG |
---|---|---|---|---|
MWCNT/PLA/PEG | 90.00 | 10 | 0 | 25 gm |
89.28 | 9.92 | 0.8 | ||
88.56 | 9.84 | 1.6 | ||
87.84 | 9.76 | 2.4 | ||
87.12 | 9.68 | 3.2 | ||
86.4 | 9.60 | 4 |
Sample | Tonset °C | T50% °C | Td−max °C | Weight Loss % |
---|---|---|---|---|
PLA | 315.66 | 365 | 387.33 | 98.7 |
PLA/PEG | 313.5 | 335 | 372.0 | 92.4 |
MWCNT | 62.66 | 227 | 241.8 | 5 |
0.8% MWCNT | 277.33 | 334.4 | 371.8 | 95.3 |
2.4% MWCNT | 275.37 | 335.6 | 373.6 | 95.5 |
4% MWCNT | 273.5 | 335.6 | 377.3 | 96.2 |
Filler [wt.%] | SEA | SER | SEtotal |
---|---|---|---|
0.8 | 5.053 | 8.826 | 13.879 |
1.6 | 4.551 | 11.226 | 15.777 |
2.4 | 4.333 | 12.684 | 17.018 |
3.2 | 4.013 | 25.016 | 29.029 |
4% | 3.873 | 38.206 | 42.078 |
Composites | Filler Content | Thickness (mm) | EMI SE (dB) at 8–12 GHz | References |
---|---|---|---|---|
MWCNT/Polypropylene | 7.5 vol % | 1.0 | ~34 | [43] |
SWCNT/Epoxy | 15 wt.% | 2 | 25 | [44] |
MWNCT/Polyacrylate | 2 wt.% | 1.5 | ~4 | [45] |
MWNCT/Polystyrene | 7 wt.% | 1 | 26 | [46] |
SWCNT/Polyaniline | 20 wt.% | 2.4 | 19 | [47] |
MWNCT/Polyurethane | 10 wt.% | 2.5 | ~41.6 | [48] |
MWNCT/Poly(trimethylene terephthalate) | 7.5 wt.% | 2 | ~23 | [49] |
MWNCT/Epoxy | 20.4 wt.% | 0.35 | ~19 | [50] |
MWCNTs/MnZn Ferrites/Epoxy | 4.0 vol % | 2.0 | 17 | [42] |
MWCNT/PLA/PEG | 0.8% | 3 | 42.078 | Present work |
MWCNTs % | T | R | A | (AE) % |
---|---|---|---|---|
0.8 | 0.297 | 0.136 | 0.567 | 0.662 |
1.6 | 0.274 | 0.147 | 0.579 | 0.685 |
2.4 | 0.239 | 0.194 | 0.567 | 0.709 |
3.2 | 0.222 | 0.206 | 0.573 | 0.725 |
4 | 0.179 | 0.246 | 0.575 | 0.766 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.F.; Aziz, S.A.; Obaiys, S.J.; Zaid, M.H.M.; Matori, K.A.; Samikannu, K.; Aliyu, U.S. Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications. Polymers 2020, 12, 427. https://doi.org/10.3390/polym12020427
Ahmad AF, Aziz SA, Obaiys SJ, Zaid MHM, Matori KA, Samikannu K, Aliyu US. Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications. Polymers. 2020; 12(2):427. https://doi.org/10.3390/polym12020427
Chicago/Turabian StyleAhmad, Ahmad Fahad, Sidek Ab Aziz, Suzan Jabbar Obaiys, Mohd Hafiz Mohd Zaid, Khamirul Amin Matori, Kanagesan Samikannu, and Umar Sa’as Aliyu. 2020. "Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications" Polymers 12, no. 2: 427. https://doi.org/10.3390/polym12020427
APA StyleAhmad, A. F., Aziz, S. A., Obaiys, S. J., Zaid, M. H. M., Matori, K. A., Samikannu, K., & Aliyu, U. S. (2020). Biodegradable Poly (lactic acid)/Poly (ethylene glycol) Reinforced Multi-Walled Carbon Nanotube Nanocomposite Fabrication, Characterization, Properties, and Applications. Polymers, 12(2), 427. https://doi.org/10.3390/polym12020427