Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Microchannel Design and Fabrication
2.2. Fluid Rheological Characterizations and Dimensionless Number
2.3. Flow Visualization
3. Result and Discussion
3.1. Flow Characteristics in Infinite Length Pore-Throat Structure
3.2. Flow Characteristic in Long Pore-Throat Structure
3.3. Flow Characteristic in Short Pore-Throat Structure
3.4. Velocity Distribution in Continuous Pore-Throat Structure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lisa, M. Organization of the Petroleum Exporting Countries (OPEC). New Palgrave Dict. Econ. 2013, 30, 989–1008. [Google Scholar]
- Zhao, Q.; Guo, L.; Huang, Z.; Chen, L.; Jin, H.; Wang, Y. Experimental Investigation on Enhanced Oil Recovery of Extra Heavy Oil by Supercritical Water Flooding. Energy Fuels 2018, 32, 1685–1692. [Google Scholar] [CrossRef]
- You, Q.; Wang, H.; Zhang, Y.; Liu, Y.F.; Fang, J.C.; Dai, C.L. Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs. J. Pet. Sci. Eng. 2018, 166, 375–380. [Google Scholar] [CrossRef]
- Mathew, S.; Dan, P.; Don, G.; Kordziel, W.; Waite, T.; Waters, G.; Vinod, P.S.; Fu, D.; Downey, R. Viscoelastic surfactant fracturing fluids: applications in low permeability reservoirs. Soc. Pet. Eng. 2000, 60, 322. [Google Scholar]
- Jia, B.; Tsau, J.S.; Barati, R. Measurement of CO2 diffusion coeffcient in the oil-saturated porous media. J. Pet. Sci. Eng. 2019, 181, 106189. [Google Scholar] [CrossRef]
- Jia, B.; Tsau, J.S.; Barati, R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 2019, 236, 404–427. [Google Scholar] [CrossRef]
- Yin, C.B.; Lin, Q.C.; Ye, D.S.; He, Q.P.; Wen, H.; Zhong, S. Evaluation of Fracturing Fluid Gel Filtration in the Reservoir Microcracks. Sino Glob. Energy 2010, 15, 53–56. [Google Scholar]
- Osborn, S.G.; Vengosh, A.; Warner, N.R.; Jackson, R.B. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci. USA 2011, 108, 8172–8176. [Google Scholar] [CrossRef] [Green Version]
- Vengosh, A.; Jackson, R.B.; Warner, N.R.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef]
- Davies, T.S.; Ketner, A.M.; Raghavan, S.R. Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. Am. Chem. Soc. 2006, 128, 6669–6675. [Google Scholar] [CrossRef]
- Candau, S.J.; Oda, R. Linear viscoelasticity of salt-free wormlike micellar solutions. Colliod Surf. A Physicochem. Eng. Asp. 2001, 183, 5–14. [Google Scholar] [CrossRef]
- Ezrahi, S.; Tuval, E.; Aserin, A. Properties, main applications and perspectives of worm micelles. Adv. Colliod Interface Sci. 2006, 128, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.R. Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks. Langmuir ACS J. Surf. Colliod 2009, 25, 8382–8385. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Phan-Thien, N. Viscoelastic flow past a confined cylinder: Instability and velocity inflection. Chem. Eng. Sci. 2007, 62, 3909–3929. [Google Scholar] [CrossRef]
- Huang, T.; Crews, J.B. Fluid-Loss Control Improves Performance of Viscoelastic Surfactant Fluids. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 28 February–2 March 2007. [Google Scholar]
- Haward, S.J.; Kitajima, N.; Toda-Peters, K.; Takahashi, T.; Shen, A.M. Flow of wormlike micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio. Soft Matter 2019, 15, 1927–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seright, R.S. Potential for Polymer Flooding Reservoirs with Viscous Oils. SPE 2010. [Google Scholar] [CrossRef]
- Seright, R.S.; Wang, D.M.; Lerner, N.; Nguyen, A.; Sabid, J.; Tochor, R. Beneficial Relative Permeabilities for polymer Flooding. SPE 2018. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, J.; Zheng, L.; Wang, S.; Li, X.; Inoue, T. Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution. J. Colloid Interface Sci. 2008, 319, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.M.; Vinson, P.K.; Minter, J.R.; Davis, H.T.; Talmon, Y.; Miller, W.G. Viscoelastic micellar solutions: microscopy and rheology. J. Phys. Chem. 1992, 96, 474–484. [Google Scholar] [CrossRef]
- Frounfelker, B.D.; Kalur, G.C.; Cipriano, B.H.; Danino, D.; Raghavan, S.R. Persistence of Birefringence in Sheared Solutions of Wormlike Micelles. Langmuir 2009, 25, 167–172. [Google Scholar] [CrossRef]
- Rojas, M.R.; Müller, A.J.; Sáez, A.E. Shear rheology and porous media flow of wormlike micelle solutions formed by mixtures of surfactants of opposite charge. J. Colliod Interface Sci. 2008, 326, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Trickett, K.; Eastoe, J. Surfactant-based gels. Adv. Colloid Interface Sci. 2008, 144, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Haward, S.J.; Ober, T.J.; Oliveira, M.S.N.; Alves, M.A.; Mickinley, G.H. Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter 2011, 8, 536–555. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.M.; Coelho, P.M.; Pinho, F.T.; Alves, M.A. Viscoelastic fluid flow past a confined cylinder: Three-dimensional effects and stability. Chem. Eng. Sci. 2014, 111, 364–380. [Google Scholar] [CrossRef]
- Cheung, P.; Dubash, N.; Shen, A.Q. Local micelle concentration fluctuations in microfluidic flows and its relation to a flow-induced structured phase (FISP). Soft Matter 2012, 8, 2304–2309. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.N.; Wang, R.Y.; Dai, C.L.; Xu, Y.; Yue, T.; Zhao, M.W. Precisely Tailoring Bubble Morphology in Microchannel by Nanoparticles Self-assembly. Ind. Eng. Chem. Res. 2019, 58, 3707–3713. [Google Scholar] [CrossRef]
- Cardiel, J.J.; Dohnalkova, A.C.; Dubash, N.; Zhao, Y.; Cheung, P.; Shen, A.Q. Microstructure and rheology of a flow-induced structured phase in wormlike micellar solutions. Proc. Natl. Acad. Sci. USA 2013, 110, 1653–1660. [Google Scholar] [CrossRef]
- Decruppe, J.P.; Greffier, O.; Manneville, S.; Lerouge, S. Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution. Phys. Rev. E 2006, 73, 061509. [Google Scholar] [CrossRef]
- López-Aguilar, J.E.; Webster, M.F.; Tamaddon-Jahromi, H.R.; Manero, O. Convoluted models and high-Weissenberg predictions for micellar thixotropic fluids in contraction-expansion flows. J. Non-Newton. Fluid Mech. 2016, 232, 55–66. [Google Scholar] [CrossRef]
- Rodd, L.E.; Cooper-White, J.J.; Boger, D.V.; Mckinley, G.H. Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries. J. Non-Newton. Fluid Mech 2007, 143, 170–191. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Li, Y.; Liu, Y.; Yang, Y.; Wu, Y. Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures. Polymers 2019, 11, 1291. https://doi.org/10.3390/polym11081291
Yu X, Li Y, Liu Y, Yang Y, Wu Y. Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures. Polymers. 2019; 11(8):1291. https://doi.org/10.3390/polym11081291
Chicago/Turabian StyleYu, Xiaoxi, Yuan Li, Yuquan Liu, Yuping Yang, and Yining Wu. 2019. "Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures" Polymers 11, no. 8: 1291. https://doi.org/10.3390/polym11081291
APA StyleYu, X., Li, Y., Liu, Y., Yang, Y., & Wu, Y. (2019). Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures. Polymers, 11(8), 1291. https://doi.org/10.3390/polym11081291