Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan–Poly (Methacrylic Acid) Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan and Poly (Methacrylic Acid) Nanoparticles (CS–PMAA)
2.3. Characterization of CS–PMAA
2.3.1. Determination of Hydrodynamic Diameter and Zeta Potential
2.3.2. Transmission Electron Microscopy (TEM) of Nanoparticles
2.4. Isolation of the Vi Antigen from Salmonella Typhi Ty-2
2.5. Characterization of Vi Antigen
2.5.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.5.2. Nuclear Magnetic Resonance (1H NMR)
2.6. Adsorption Kinetics of the Vi Antigen in CS–PMAA
3. Results and Discussion
3.1. Characterization of CS–PMAA
3.1.1. Hydrodynamic Diameter and Zeta Potential of CS–PMAA
3.1.2. TEM
3.2. Characterization of Vi antigen
3.2.1. FTIR Spectroscopy
3.2.2. Nuclear Magnetic Resonance (1H NMR)
3.3. Kinetics of Adsorption
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Yadavalli, T.; Shukla, D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Ballesta, M.M.; Izquierdo, A.G.; Viguera, C.G.; Perles, R.D. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 2018, 7, 1–29. [Google Scholar]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Chen, J.Y.; Chen, H.W.; Hu, C.M.J. Nanoparticles vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics 2017, 1, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Batista, P.; Castro, P.; Madureira, A.R.; Sarmento, B.; Pintado, M. Development and characterization of chitosan microparticles-in-films for buccal delivery of bioactive peptides. Pharmaceuticals 2019, 12, 32. [Google Scholar] [CrossRef]
- Prado, L.B.; Huber, S.C.; barnabé, A.; Bassora, F.D.S.; Paixão, D.S.; Duran, N.; Annichino-Bizzacchi, J.M. Characterization of PLC and Chitosan nanoparticles as carriers of Enoxaparin and its antithrombotic effect in animal models of venous thrombosis. J. Nanotechnol. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Recent applications of chitin—And chitosan—Based polymers in plants. Polymers 2019, 11, 839. [Google Scholar] [CrossRef]
- Costa, A.C.; Brandão, H.M.; Da Silva, S.R.; Bentes-Souza, A.R.; Diniz, J.A.P., Jr.; Viana Pinheiro Jde, J.; de Melo Mde, F.; Silva, J.O., Jr.; Matos, E.R.; Ribeiro-Costa, R.M. Mucoadhesive nanoparticles: A new perspective for fish drug apllication. J. Fish Dis. 2016, 39, 1–4. [Google Scholar] [CrossRef]
- Ways, T.M.M.; Lau, W.M.; Krutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef]
- Grifoll-Romero, L.; Pascual, S.; Aragunde, H.; Biarnés, X.; Planas, A. Chitin deacetylases: Structures, specificities, and biotech applications. Polymers 2018, 10, 352. [Google Scholar] [CrossRef]
- Silva, M.M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.J.; Gonçalves, L.M.D. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs 2017, 15, 370. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Kucharczyk, P.; Capakova, Z.; Humpolicek, P.; Sedlarik, V. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. J. Nanopart. Res. 2017, 19, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liston, S.D.; Ovchinnikova, O.G.; Whitfield, C. Unique lipid anchor attaches Vi antigen capsule to the surface of Salmonella enterica Serovar Typhi. Proc. Natl. Acad. Sci. USA 2016, 113, 6719–6724. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, Z.; Xiong, K.; Wang, J.; Rao, X.; Cong, Y. Vi Capsular Polysaccharide: Synthesis, virulence and application. Crit. Rev. Microbiol. 2017, 43, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Bharmonia, A.; Majumder, S. Extraction of Vi antigen from Salmonella Typhi for establishing its antigenic evaluation by Elisa in comparison to commercial Vi antigen. Int. J. Pharm. Sci. Rev. Res. 2017, 47, 88–94. [Google Scholar]
- Ben-Akira, E.; Est Wittes, S.; Meyer, R.A.; Rhodes, K.R.; Green, J.J. Polymeric micro—And nanoparticles for immune modulation. Biomater. Sci. 2018, 7, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A.; Khan, A.A.; Alshamsan, A. Non – invasive administration of biodegradable nano—Carrier vaccines. Am. J. Trans. Res. 2017, 9, 15–35. [Google Scholar]
- Moura, M.R.; Aouada, F.A.; Mattoso, L.H.C. Preparation of chitosan nanoparticles using methacrylic acid. J. Colloid Interface Sci. 2008, 312, 477–483. [Google Scholar] [CrossRef]
- Wong, K.H.; Feeley, J.C. Isolation of Vi antigen and a simple method for its measurement. Am. Soc. Microbiol. 1972, 24, 628–633. [Google Scholar]
- Stone, A.L.; Szu, S.C. Application of optical properties on the Vi capsular polysaccharide for quantitation of the Vi antigen in vaccines for typhoid fever. J. Clin. Microbiol. 1988, 26, 719–725. [Google Scholar]
- Ahmad, U.; Ahmad, Z.; Khan, A.A.; Akhtar, J.; Singh, S.P.; Ahman, F.J. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res. 2018, 68, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.P.D.; Tavares, E.J.M.; Alves, T.V.G.; Moura, M.R.; Da Costa, C.E.F.; Junior, J.O.C.S.; Costa, R.M.R. Chitosan nanoparticles as a modified diclofenac drug release system. J. Nanopart. Res. 2017, 19, 1–19. [Google Scholar]
- Sun, D.; Kang, S.; Liu, C.; Lu, Q.; Cui, L.; Hu, B. Effect of zeta potential and particles size on the stability of SiO2 nanospheres as carrier for ultrasound imaging contrast agents. Int. J. Electrochem. Sci. 2016, 11, 8520–8529. [Google Scholar] [CrossRef]
- Nandakumar, V.; Geetha, V.; Chittaranjan, S.; Doble, M. High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem. Biomed. Pharm. 2013, 67, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Wetter, M.; Goulding, D.; Pickard, D.; Kowarik, M.; Waechter, C.J.; Dougan, G.; Wacker, M. Molecular characterization of the via B locus encoding in Salmonella Typhi. PLoS ONE 2012, 7, e45609. [Google Scholar] [CrossRef]
- Berti, F.; De Ricco, R.; Pappuoli, R. Role of O-acetylation in the immunogenicity of bacterial polysaccharide vaccines. Molecules 2018, 23, 1340. [Google Scholar] [CrossRef]
- Legnani, L.; Compostella, F.; Grazioso, G.; Albinim, F.M. Molecular dynamics simulations of the Salmonella Typhi Vi antigenic polysaccharide and effects of the introduction of a zwitterionic motif. Org. Biomol. Chem. 2011, 90, 5554–5559. [Google Scholar] [CrossRef]
- Santos, M.S.; Petkowiez, C.L.O.; Haminiuk, C.W.I.; Cândido, L.M.B. Polysaccharides extracted from gabiroba (Campomanesia Xanthocarpa Berg): Property chemical and rheological profile. Polymers 2000, 20, 352–358. [Google Scholar]
- Silva, M.L.C.; Martinez, P.F.; Vasconcelos, A.F.D.; Izeli, N.L.; Cardoso, M.S. Chemical characterization of glucans and their biotechnological applications. Quim. Nova 2006, 29, 85–92. [Google Scholar] [CrossRef]
- Lemercinier, X.; Martinez-cabrera, I.; Jones, C. Use and validation of an NMR test for the identity and O-acetyl content of the Salmonella Typhi Vi capsular polysaccharide. Biologicals 2000, 28, 17–24. [Google Scholar] [CrossRef]
- Martínez, I.; Muñoz, Y.; Riverón, L.; Duarte, M.; Jones, C.; Lemercinier, X.; Napoles, L.; Muñoz, X. Caracterización físico-química del polisacárido Vi de Salmonella Typhi. VacciMonitor 1999, 8, 6–12. [Google Scholar]
- Kothari, S.; Kothari, N.; Kim, J.A.; Lee, E.; Yoon, Y.K.; An, S.J.; Jones, C.; Choe, W.S.; Carbis, R. A novel method for purification of Vi capsular polysaccharide produced by Salmonella enterica subspecies enterica serovar Typhi. Vaccine 2013, 31, 4714–4719. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Ma, G. Polymeric micro/nanoparticles: Particles design and potential vaccine delivery applications. Vaccine 2015, 33, 5927–5936. [Google Scholar] [CrossRef] [PubMed]
CS–PMAA Nanoparticles* | Particle Size (nm) | Zeta Potential (mV) |
---|---|---|
0.5–0.5% 0.5–0.8% 0.5–1% | 213.9 ± 3.29 222.7 ± 10.5 193.2 ± 1.69 | 4.8 ± 0.55 6.79 ± 0.20 5.55 ± 0.13 |
0.8–0.5% 0.8–0.8% 0.8–1% | 234.9 ± 2.66 173.7 ± 8.27 131.4 ± 0.29 | 2.2 ± 0.50 6.69 ± 0.23 6.34 ± 0.10 |
1–0.5% 1–0.8% 1–1% | 153.9 ± 0.70 206.8 ± 2.57 123.9 ± 2.48 | 9.87 ± 0.24 2.65 ± 0.37 7.45 ± 0.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, R.L.; da Silva, J.R.; Júnior, A.P.D.; Marinho, P.S.B.; Santos, L.S.; Teixeira, F.M.; Júnior, J.O.C.S.; Costa, R.M.R. Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan–Poly (Methacrylic Acid) Nanoparticles. Polymers 2019, 11, 1226. https://doi.org/10.3390/polym11071226
da Silva RL, da Silva JR, Júnior APD, Marinho PSB, Santos LS, Teixeira FM, Júnior JOCS, Costa RMR. Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan–Poly (Methacrylic Acid) Nanoparticles. Polymers. 2019; 11(7):1226. https://doi.org/10.3390/polym11071226
Chicago/Turabian Styleda Silva, Raimundo Lopes, Jaqueline Rodrigues da Silva, Anivaldo Pereira Duarte Júnior, Patrícia Santana Barbosa Marinho, Lourivaldo Silva Santos, Francisco Martins Teixeira, José Otávio Carréra Silva Júnior, and Roseane Maria Ribeiro Costa. 2019. "Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan–Poly (Methacrylic Acid) Nanoparticles" Polymers 11, no. 7: 1226. https://doi.org/10.3390/polym11071226