Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphological Characteristics
3.2. Tensile Properties
3.3. Melt Flowability
3.4. Thermal Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashori, A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Vandi, L.J.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B. Composites of wood and biodegradable thermoplastics: A review. Polym. Rev. 2018, 58, 444–494. [Google Scholar] [CrossRef]
- Chen, J.; Teng, Z.; Wu, J. Recycling of waste FRP and corn straw in wood plastic composites. Polym. Compos. 2017, 38, 2140–2145. [Google Scholar] [CrossRef]
- Sohn, J.S.; Cha, S.W. Effect of Chemical Modification on Mechanical Properties of Wood-Plastic Composite Injection-Molded Parts. Polymers 2018, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lee, S.; Noruziaan, B.; Cheung, M.; Tao, J. Fabrication and interfacial modification of wood/recycled plastic composite materials. Compos. Part A: Appl. Sci. Manuf. 2008, 39, 655–661. [Google Scholar] [CrossRef]
- Mei, C.; Sun, X.; Wan, M.; Wu, Q.; Chun, S.J.; Lee, S. Coextruded wood plastic composites containing recycled wood fibers treated with micronized copper-quat: Mechanical, moisture absorption, and chemical leaching performance. Waste Biomass Valor. 2018, 9, 2237–2244. [Google Scholar] [CrossRef]
- Turku, I.; Keskisaari, A.; Kärki, T.; Puurtinen, A.; Marttila, P. Characterization of wood plastic composites manufactured from recycled plastic blends. Compos. Struct. 2017, 161, 469–476. [Google Scholar] [CrossRef]
- Thompson, D.W.; Hansen, E.N.; Knowles, C.; Muszynski, L. Opportunities for wood plastic composite products in the US highway construction sector. Bioresources 2010, 5, 1336–1352. [Google Scholar]
- Fabiyi, J.S.; McDonald, A.G. Effect of wood species on property and weathering performance of wood plastic composites. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 1434–1440. [Google Scholar] [CrossRef]
- Friedrich, D.; Luible, A. Standard-compliant development of a design value for wood–plastic composite cladding: An application-oriented perspective. Case Stud. Struct. Eng. 2016, 5, 13–17. [Google Scholar] [CrossRef]
- An, S.; Ma, X. Properties and structure of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/wood fiber biodegradable composites modified with maleic anhydride. Ind. Crop. Prod. 2017, 109, 882–888. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E.; Christopoulos, A. Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Compos. Part B: Eng. 2015, 80, 134–144. [Google Scholar] [CrossRef]
- Park, C.W.; Youe, W.J.; Namgung, H.W.; Han, S.Y.; Seo, P.N.; Chae, H.M.; Lee, S.H. Effect of lignocellulose nanofibril and polymeric methyelen diphenyl diisocyanate addition on plasticized lignin/polycaprolactone composites. Bioresources 2018, 13, 6802–6817. [Google Scholar]
- Li, F.; Luo, S.; Ma, C.; Yu, J.; Cao, A. The crystallization and morphology of biodegradable poly(butylene succinate-co-terephthalate) copolyesters with high content of BT units. J. Appl. Polym. Sci. 2010, 118, 623–630. [Google Scholar] [CrossRef]
- Lin, N.; Fan, D.; Chang, P.R.; Yu, J.; Cheng, X.; Huang, J. Structure and properties of poly(butylene succinate) filled with lignin: A case of lignosulfonate. J. Appl. Polym. Sci. 2011, 121, 1717–1724. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, X.; Chen, X.; Xu, K. Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/ poly(butylene succinate) blends. J. Appl. Polym. Sci. 2009, 114, 3923–3931. [Google Scholar] [CrossRef]
- Nam, T.H.; Ogihara, S.; Tung, N.H.; Kobayashi, S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos. Part B: Eng. 2011, 42, 1648–1656. [Google Scholar] [CrossRef]
- Frollini, E.; Bartolucci, N.; Sisti, L.; Celli, A. Poly(butylene succinate) reinforced with different lignocellulosic fibers. Ind. Crop. Prod. 2013, 45, 160–169. [Google Scholar] [CrossRef]
- Lee, J.M.; Mohd Ishak, Z.A.; Mat Taib, R.; Law, T.T.; Zhmad Thirmizir, M.Z. Mechanical, thermal and water absorption properties of kenaf-fiber-based polypropylene and poly(butylene succinate) composites. J. Polym. Environ. 2013, 21, 293–302. [Google Scholar] [CrossRef]
- Wan, C.; Chen, B. Reinforcement of biodegradable poly(butylene succinate) with low loadings of graphene oxide. J. Appl. Polym. Sci. 2013, 127, 5094–5099. [Google Scholar] [CrossRef]
- Mizuno, S.; Maeda, T.; Kanemura, C.; Hotta, A. Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes. Polym. Degrad. Stab. 2015, 117, 58–65. [Google Scholar] [CrossRef]
- Ludueña, L.N.; Fortunati, E.; Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Puglia, D.; Manfredi, L.B.; Pracella, M. Preparation and characterization of polybutylene-succinate/poly (ethylene-glycol)/cellulose nanocrystals ternary composites. J. Appl. Polym. Sci. 2016, 133, 43302. [Google Scholar] [CrossRef]
- Flores-Hernandez, M.A.; González, I.R.; Lomeli-Ramirez, M.G.; Fuentes-Talavera, F.J.; Silva-Guzman, J.A.; Cerpa-Gallegos, M.A.; Garcia-Enriquez, S. Physical and mechanical properties of wood plastic composites polystyrene-white oak wood flour. J. Compos. Mater. 2014, 48, 209–217. [Google Scholar] [CrossRef]
- Ares, A.; Bouza, R.; Pardo, S.G.; Abad, M.-J.; Barral, L.; Ares-Pernas, A. Rheological, Mechanical and Thermal Behaviour of Wood Polymer Composites Based on Recycled Polypropylene. J. Polym. Environ. 2010, 18, 318–325. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F.; El Kissi, N. Rheological and mechanical characterization of polypropylene-based wood plastic composites. Polym. Compos. 2016, 37, 3460–3473. [Google Scholar] [CrossRef]
- Ou, R.; Xie, Y.; Wang, Q.; Sui, S.; Wolcott, M.P. Effects of ionic liquid on the rheological properties of wood flour/high density polyethylene composites. Compos. Part A: Appl. Sci. Manuf. 2014, 61, 134–140. [Google Scholar] [CrossRef]
- Baker, D.A.; Rials, T.G. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. [Google Scholar] [CrossRef]
- Kim, Y.S.; Youe, W.-J.; Kim, S.J.; Lee, O.-K.; Lee, S.-S. Preparation of a Thermoplastic Lignin-Based Biomaterial through Atom Transfer Radical Polymerization. J. Wood Chem. Technol. 2015, 35, 251–259. [Google Scholar] [CrossRef]
- Sahoo, S.; Misra, M.; Mohanty, A.K. Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 1710–1718. [Google Scholar] [CrossRef]
- Anderson, S.; Zhang, J.; Wolcott, M.P. Effect of Interfacial Modifiers on Mechanical and Physical Properties of the PHB Composite with High Wood Flour Content. J. Polym. Environ. 2013, 21, 631–639. [Google Scholar] [CrossRef]
- Sahoo, S.; Mistra, M.; Mohanty, A.K. Biocomposites from switchgrass ad lignin hybrid and poly(butylene succinate) bioplastic: Studies on reactive compatibilization and performance evaluation. Macromol. Mater. Eng. 2014, 299, 178–189. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Xiang, H.; Zhou, Z.; Chang, T.; Zhu, M. Low cost carbon fibers from bio-renewable Lignin/Poly(lactic acid) (PLA) blends. Compos. Sci. Technol. 2015, 119, 20–25. [Google Scholar] [CrossRef]
Sample Code | Composition of WPC | |||
---|---|---|---|---|
PBS (%) | WF (%) | KL (phr) | pMDI (phr) | |
PBS | 100 | - | - | - |
PBS/WF (90/10) | 90 | 10 | - | - |
PBS/WF (70/30) | 70 | 30 | - | - |
PBS/WF (50/50) | 50 | 50 | - | - |
PBS/WF/KL (50/50/5) | 50 | 50 | 5 | - |
PBS/WF/KL (50/50/10) | 50 | 50 | 10 | - |
PBS/WF/KL (50/50/20) | 50 | 50 | 20 | - |
PBS/WF (90/10) with pMDI | 90 | 10 | - | 2 |
PBS/WF (70/30) with pMDI | 70 | 30 | - | 2 |
PBS/WF (50/50) with pMDI | 50 | 50 | - | 2 |
PBS/WF/KL (50/50/5) with pMDI | 50 | 50 | 5 | 2 |
PBS/WF/KL (50/50/10) with pMDI | 50 | 50 | 10 | 2 |
PBS/WF/KL (50/50/20) with pMDI | 50 | 50 | 20 | 2 |
Sample Code | γ (°C/min) | Tc (°C) | ΔHc (J/g) | XPBS (%) | t1/2 (min) | n | R2 | Δknon (min−n) |
---|---|---|---|---|---|---|---|---|
Neat PBS | 10 | 77.1 | 69.0 | 32.9 | 1.12 | 3.0 | 0.998 | 0.93 |
20 | 71.0 | 66.9 | 31.9 | 0.75 | 2.9 | 0.998 | 1.02 | |
30 | 66.6 | 65.2 | 31.0 | 0.61 | 2.9 | 0.999 | 1.03 | |
40 | 63.1 | 64.5 | 30.7 | 0.58 | 3.1 | 0.998 | 1.03 | |
PBS/WF (50/50) | 10 | 83.6 | 39.9 | 38.0 | 0.77 | 2.9 | 0.998 | 1.05 |
20 | 79.4 | 39.3 | 37.4 | 0.50 | 2.8 | 0.994 | 1.08 | |
30 | 76.6 | 39.0 | 37.2 | 0.39 | 2.7 | 0.990 | 1.11 | |
40 | 74.2 | 40.1 | 38.2 | 0.34 | 2.6 | 0.989 | 1.12 | |
PBS/WF/KL (50/50/20) | 10 | 70.5 | 28.1 | 32.1 | 1.10 | 3.5 | 0.994 | 0.93 |
20 | 63.0 | 27.9 | 31.9 | 0.71 | 3.4 | 0.996 | 1.04 | |
30 | 57.7 | 27.4 | 31.3 | 0.56 | 3.5 | 0.998 | 1.06 | |
40 | 53.5 | 27.3 | 31.2 | 0.45 | 3.2 | 0.998 | 1.06 | |
PBS/WF/KL (50/50/20) with pMDI | 10 | 73.3 | 27.8 | 32.3 | 1.13 | 3.8 | 0.998 | 0.93 |
20 | 66.6 | 27.5 | 32.0 | 0.79 | 4.0 | 0.997 | 1.03 | |
30 | 61.8 | 27.2 | 31.6 | 0.67 | 4.0 | 0.989 | 1.04 | |
40 | 58.9 | 27.6 | 32.1 | 0.47 | 3.5 | 0.998 | 1.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-W.; Youe, W.-J.; Han, S.-Y.; Park, J.-S.; Lee, E.-A.; Park, J.-Y.; Kwon, G.-J.; Kim, S.-J.; Lee, S.-H. Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite. Polymers 2019, 11, 1161. https://doi.org/10.3390/polym11071161
Park C-W, Youe W-J, Han S-Y, Park J-S, Lee E-A, Park J-Y, Kwon G-J, Kim S-J, Lee S-H. Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite. Polymers. 2019; 11(7):1161. https://doi.org/10.3390/polym11071161
Chicago/Turabian StylePark, Chan-Woo, Won-Jae Youe, Song-Yi Han, Ji-Soo Park, Eun-Ah Lee, Jung-Yoon Park, Gu-Joong Kwon, Seok-Ju Kim, and Seung-Hwan Lee. 2019. "Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite" Polymers 11, no. 7: 1161. https://doi.org/10.3390/polym11071161
APA StylePark, C.-W., Youe, W.-J., Han, S.-Y., Park, J.-S., Lee, E.-A., Park, J.-Y., Kwon, G.-J., Kim, S.-J., & Lee, S.-H. (2019). Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite. Polymers, 11(7), 1161. https://doi.org/10.3390/polym11071161