Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Films
2.3. Response Surface Methodology
2.4. Characterization of Films
2.5. Antibacterial Activity
2.6. Enzymatic Degradation
2.7. Application on Fresh-Cut Wax Gourd
3. Results and Discussion
3.1. Response Surface Analysis
3.2. Characterization of Films
3.3. Antibacterial Activity
3.4. Enzymatic Degradation
3.5. Application on Fresh-Cut Wax Gourd
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Kisonen, V.; Prakobna, K.; Xu, C.; Salminen, A.; Mikkonen, K.S.; Valtakari, D.; Eklund, P.; Seppälä, J.; Tenkanen, M.; Willför, S. Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J. Mater. Sci. 2015, 50, 3189–3199. [Google Scholar] [CrossRef]
- Ramziia, S.; Ma, H.; Yao, Y.; Wei, K.; Huang, Y. Enhanced antioxidant activity of fish gelatin–chitosan edible films incorporated with procyanidin. J. Appl. Polym. Sci. 2018, 135, 45781. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Zhang, A.; Li, K.; Oderinde, O.; Yao, F.; Fu, G. Zinc ion-induced formation of hierarchical N-succinyl chitosan film. J. Appl. Polym. Sci. 2017, 134, 44664. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Ding, F. Emerging chitosan-based films for food packaging applications. J. Agric. Food. Chem. 2017, 66, 395. [Google Scholar] [CrossRef]
- Owczarz, P.; Ziółkowski, P.; Dziubiński, M. The application of small-angle light scattering for rheo-optical characterization of chitosan colloidal solutions. Polymers 2018, 10, 431. [Google Scholar] [CrossRef]
- Paiva, D.; Gonçalves, C.; Vale, I.; Bastos, M.M.S.M.; Magalhães, F.D. Oxidized xanthan gum and chitosan as natural adhesives for cork. Polymers 2016, 8, 259. [Google Scholar] [CrossRef]
- Song, Z.; Li, G.; Guan, F.; Liu, W. Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 2018, 10, 389. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Zhang, J.; Yao, J. Molecular interactions in gelatin/chitosan composite films. Food Chem. 2017, 235, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Anaya, P.; Cardenas, G.; Lavayen, V.; Garcia, A.; O’Dwyer, C. Chitosan gel film bandages: Correlating structure, composition, and antimicrobial properties. J. Appl. Polym. Sci. 2012, 128, 3939–3948. [Google Scholar] [CrossRef]
- Correia, C.O.; Caridade, S.G.; Mano, J.F. Chitosan membranes exhibiting shape memory capability by the action of controlled hydration. Polymers 2014, 6, 1178–1186. [Google Scholar] [CrossRef]
- Santos-López, G.; Argüelles-Monal, W.; Carvajal-Millan, E.; López-Franco, Y.L.; Recillas-Mota, M.T.; Lizardi-Mendoza, J. Aerogels from chitosan solutions in ionic liquids. Polymers 2017, 9, 722. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Hein, S.; Ng, C.-H.; Stevens, W.F. Molecular stability of chitosan in acid solutions stored at various conditions. J. Appl. Polym. Sci. 2008, 107, 2588–2593. [Google Scholar] [CrossRef]
- Prasanna, K.; Sailaja, R.R.N. Blends of LDPE/chitosan using epoxy-functionalized LDPE as compatibilizer. J. Appl. Polym. Sci. 2012, 124, 3264–3275. [Google Scholar] [CrossRef]
- Khan, R.A.; Salmieri, S.; Dussault, D.; Sharmin, N.; Lacroix, M. Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly(caprolactone). J. Appl. Polym. Sci. 2012, 123, 1690–1697. [Google Scholar] [CrossRef]
- Bang, S.H.; Son, J.R.; Lee, S.Y.; Park, H.J. Preparation and characterization of composite gels and films containing gelatin and hydroxypropyl methylcellulose phthalate. J. Appl. Polym. Sci. 2014, 131, 569–582. [Google Scholar] [CrossRef]
- Sugantha Kumari, V.; Khaleel Basha, S.; Sudha, P.N. Physicochemical and morphological evaluation of chitosan/poly(vinyl alcohol)/methylcellulose chemically cross-linked ternary blends. Polym. Bull. 2011, 68, 1387–1393. [Google Scholar] [CrossRef]
- Abed, A.; Assoul, N.; Ba, M.; Derkaoui, S.M.; Portes, P.; Louedec, L.; Flaud, P.; Bataille, I.; Letourneur, D.; Meddahi-Pelle, A. Influence of polysaccharide composition on the biocompatibility of pullulan/dextran-based hydrogels. J. Biomed. Mater. Res. Part A 2011, 96, 535–542. [Google Scholar] [CrossRef]
- Ma, X.; Liu, C.; Anderson, D.P.; Chang, P.R. Porous cellulose spheres: Preparation, modification and adsorption properties. Chemosphere 2016, 165, 399–408. [Google Scholar] [CrossRef]
- Bejenariu, A.; Popa, M.; Dulong, V.; Picton, L.; Le Cerf, D. Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour. Polym. Bull. 2009, 62, 525–538. [Google Scholar] [CrossRef]
- Carbinatto, F.M.; de Castro, A.D.; Cury, B.S.; Magalhaes, A.; Evangelista, R.C. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int. J. Pharm. 2012, 423, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Gui-Jie, M.; Peng, W.; Xiang-Sheng, M.; Xing, Z.; Tong, Z. Crosslinking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. J. Appl. Polym. Sci. 2006, 102, 5854–5860. [Google Scholar] [CrossRef]
- Racksanti, A.; Janhom, S.; Punyanitya, S.; Watanesk, R.; Watanesk, S. An approach for preparing an absorbable porous film of silk fibroin-rice starch modified with trisodium trimetaphosphate. J. Appl. Polym. Sci. 2015. [Google Scholar] [CrossRef]
- Racksanti, A.; Janhom, S.; Punyanitya, S.; Watanesk, R.; Watanesk, S. Crosslinking density of silk fibroin-rice starch hydrogels modified with trisodium trimetaphosphate. Appl. Mech. Mater. 2013, 366–372. [Google Scholar] [CrossRef]
- Goncalves, I.; Nunes, C.; Mendes, S.; Martins, L.O.; Ferreira, P.; Coimbra, M.A. CotA laccase-ABTS/hydrogen peroxide system: An efficient approach to produce active and decolorized chitosan-genipin films. Carbohydr. Polym. 2017, 175, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yuan, L.; Lin, L. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef. Carbohydr. Polym. 2017, 177, 156–164. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Rodríguez, F.; Guarda, A.; Galotto, M.J. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydr. Polym. 2016, 136, 1052–1060. [Google Scholar] [CrossRef]
- Yu, S.-H.; Tsai, M.-L.; Lin, B.-X.; Lin, C.-W.; Mi, F.-L. Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced β -carotene degradation. Food Hydrocolloids 2015, 44, 491–505. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 2018, 107, 848–854. [Google Scholar] [CrossRef]
- Song, Z.; Li, F.; Guan, H.; Xu, Y.; Fu, Q.; Li, D. Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Ctrl. 2017, 74, 34–44. [Google Scholar] [CrossRef]
- Aranaz, I.; Harris, R.; Navarro-García, F.; Heras, A.; Acosta, N. Chitosan based films as supports for dual antimicrobial release. Carbohydr. Polym. 2016, 146, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Akinosho, H.; Hawkins, S.; Wicker, L. Hydroxypropyl methylcellulose substituent analysis and rheological properties. Carbohydr. Polym. 2013, 98, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, S.; Chen, Y.; Zhang, L.; Kan, J.; Jin, C. Physical, mechanical and antioxidant properties of chitosan films grafted with different hydroxybenzoic acids. Food Hydrocolloids 2017, 71, 176–186. [Google Scholar] [CrossRef]
- Aziz, S.; Rasheed, M.; Ahmed, H. Synthesis of polymer nanocomposites based on [Methyl Cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 2017, 9, 194. [Google Scholar] [CrossRef]
- Wei, X.-L.; Liang, S.; Xu, Y.-Y.; Sun, Y.-L.; An, J.-F.; Chao, Z.-S. Patching NaA zeolite membrane by adding methylcellulose into the synthesis gel. J. Membr. Sci. 2016, 530, 240–249. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Ge, H.; Chen, L.; Wang, J.; Zhang, S.; Guo, Y.; Li, Z.; Feng, X. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydr. Polym. 2017, 179, 207–220. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Wu, Q.; Gu, Y.; Kan, J.; Jin, C. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocolloids 2017, 73, 90–100. [Google Scholar] [CrossRef]
- Tunc, S.; Duman, O.; Polat, T.G. Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites. Carbohydr. Polym. 2016, 150, 259–268. [Google Scholar] [CrossRef]
- García, M.A.; Pinotti, A.; Martino, M.; Zaritzky, N. Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloids 2009, 23, 722–728. [Google Scholar]
- Pastor, C.; Sánchez-González, L.; Chiralt, A.; Cháfer, M.; González-Martínez, C. Physical and antioxidant properties of chitosan and methylcellulose-based films containing resveratrol. Food Hydrocolloids 2013, 30, 272–280. [Google Scholar] [CrossRef]
- Pinotti, A.; García, M.A.; Martino, M.N.; Zaritzky, N.E. Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocolloids 2007, 21, 66–72. [Google Scholar] [CrossRef]
Projects | Parameters |
---|---|
Addition of methylcellulose | 0, 30 wt %, 50 wt %, 70 wt %, and 100 wt % |
STMP concentration | 0.1 wt %, 0.2 wt %, 0.3 wt %, 0.4 wt %, and 0.5 wt % |
Crosslinking time | 0.5 h, 1.5 h, 2.5 h, 3.5 h, and 4.5 h |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 20.06 | 9 | 2.23 | 13.60 | 0.0012 |
A-MC/(CS + MC) | 8.61 | 1 | 8.61 | 52.53 | 0.0002 |
B-STMPC | 0.011 | 1 | 0.011 | 0.069 | 0.8009 |
C-CT | 6.13 | 1 | 6.13 | 37.36 | 0.0005 |
AB | 0.023 | 1 | 0.023 | 0.14 | 0.7220 |
AC | 1.00 | 1 | 1.00 | 6.10 | 0.0428 |
BC | 0.040 | 1 | 0.040 | 0.24 | 0.6364 |
A2 | 3.32 | 1 | 3.32 | 20.23 | 0.0028 |
B2 | 0.24 | 1 | 0.24 | 1.45 | 0.2678 |
C2 | 0.41 | 1 | 0.41 | 2.51 | 0.1573 |
Residual | 1.15 | 7 | 0.16 | ||
Lack of Fit | 1.15 | 3 | 0.38 | ||
Pure Error | 0.000 | 4 | 0.000 | ||
Cor Total | 21.21 | 16 |
Films | A500 | Color Parameters | |||
---|---|---|---|---|---|
L* | a* | b* | ∆E | ||
CSF | 0.611 | 42.54 | 37.38 | 38.38 | − |
CSMCF1 | 4.375 | 56.31 | 23 | 59.55 | 29.06 |
CSMCF2 | 5.081 | 61.04 | 27.00 | 64.02 | 33.28 |
CCSF | 5.472 | 79.81 | −0.84 | 25.32 | 54.96 |
CCSMCF1 | 5.601 | 82.33 | −1.6 | 12.77 | 61.31 |
CCSMCF2 | 5.632 | 86.21 | −2.00 | 12.41 | 64.28 |
Samples | Solubility (%) | Inhibition Ratio (%) | Degradation Ratio (%) | |
---|---|---|---|---|
E. coli | S. aureus | |||
CSF | 1.5 ± 0.03 | 99.8 | 99.9 | 2 ± 0.17 |
CSMCF1 | 12 ± 0.11 | 99.1 | 99.6 | 3 ± 0.15 |
CSMCF2 | 23 ± 0.07 | 99.2 | 99.2 | 6 ± 0.19 |
CCSF | 1 ± 0.05 | 99.6 | 99.7 | 1.8 ± 0.08 |
CCSMCF1 | 3 ± 0.09 | 99.1 | 99.0 | 1.7 ± 0.13 |
CCSMCF2 | 6 ± 0.12 | 99.0 | 99.0 | 1.7 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liao, Y.; Wu, A.; Li, B.; Qian, J.; Ding, F. Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application. Polymers 2019, 11, 368. https://doi.org/10.3390/polym11020368
Wang H, Liao Y, Wu A, Li B, Qian J, Ding F. Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application. Polymers. 2019; 11(2):368. https://doi.org/10.3390/polym11020368
Chicago/Turabian StyleWang, Hongxia, Yu Liao, Ailiang Wu, Bing Li, Jun Qian, and Fuyuan Ding. 2019. "Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application" Polymers 11, no. 2: 368. https://doi.org/10.3390/polym11020368
APA StyleWang, H., Liao, Y., Wu, A., Li, B., Qian, J., & Ding, F. (2019). Effect of Sodium Trimetaphosphate on Chitosan-Methylcellulose Composite Films: Physicochemical Properties and Food Packaging Application. Polymers, 11(2), 368. https://doi.org/10.3390/polym11020368