Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Film Production
2.3. Characterization
2.3.1. Contact Angle Measurement
2.3.2. Haze and Transmittance Measurement
2.3.3. Atomic Force Microscopy (AFM)
2.3.4. SAXS and WAXS Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, T.I.; Morris, B.A. PE-Based Multilayer Film Structures. In Multilayer Flexible Packaging; William Andrew Publishing: Burlington, MA, USA, 2016; pp. 281–310. [Google Scholar]
- Laverde, G. AGRICULTURAL FILMS: TYPES AND APPLICATIONS. J. Plast. Film Sheeting 2002, 18, 269–277. [Google Scholar] [CrossRef]
- Xu, M.M.; Huang, G.Y.; Feng, S.S.; McShane, G.J.; Stronge, W.J. Static and Dynamic Properties of Semi-Crystalline Polyethylene. Polymers 2016, 8, 77. [Google Scholar] [CrossRef]
- Manas, D.; Manas, M.; Mizera, A.; Stoklasek, P.; Navratil, J.; Sehnalek, S.; Drabek, P. The High Density Polyethylene Composite with Recycled Radiation Cross-Linked Filler of RHDPEx. Polymers 2018, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Stehling, F.C.; Speed, C.S.; Westerman, L. Causes of Haze of Low-Density Polyethylene Blown Films. Macromolecules 1981, 14, 698–708. [Google Scholar] [CrossRef]
- Wang, L.E.I.; Kamal, M.R.; Rey, A.D. Light Transmission and Haze of Polyethylene Biown Thin Films. Polym. Eng. Sci. 2001, 41, 358–372. [Google Scholar] [CrossRef]
- Larena, A.; Pinto, G. The Effect of Surface Roughness and Crystallinity on the Light Scattering of Polyethylene Tubular Blown Films. Polym. Eng. Sci. 1993, 33, 742–747. [Google Scholar] [CrossRef]
- Smith, P.F.; Chun, I.; Liu, G.; Dimitrievich, D.; Rasburn, J.; Vancso, G.J. Studies of Optical Haze and Surface Morphology of Blown Polyethylene Films Using Atomic Force Microscopy. Polym. Eng. Sci. 1996, 36, 2129–2134. [Google Scholar] [CrossRef]
- Andreassen, E.; Larsen, A.; Nord-Varhaug, K.; Skar, M.; Emptysd, H. Haze of Polyethylene Films - Effects of Material Parameters and Clarifying Agents. Polym. Eng. Sci. 2002, 42, 1082–1097. [Google Scholar] [CrossRef]
- Fratini, C.M.; Esker, A.R.; Gibson, H.W.; Ward, T.C.; Wilkes, G.L. Study of the Morphology and Optical Properties of Propylene/Ethylene Copolymer Films. Dr. Diss. Virginia Tech 2006. [Google Scholar]
- Wang, Y.J.; Zhang, X.N.; Song, Y.; Zhao, Y.; Chen, L.; Su, F.; Li, L.; Wu, Z.L.; Zheng, Q. Ultrastiff and Tough Supramolecular Hydrogels with a Dense and Robust Hydrogen Bond Network. Chem. Mater. 2019, 31, 1430–1440. [Google Scholar] [CrossRef]
- Wang, Z.; Kong, D.; Yang, L.; Ma, H.; Su, F.; Ito, K.; Liu, Y.; Wang, X.; Wang, Z. Analysis of Small-Angle Neutron Scattering Spectra from Deformed Polymers with the Spherical Harmonic Expansion Method and a Network Model. Macromolecules 2018, 51, 9011–9018. [Google Scholar] [CrossRef]
- Rosa, R.; Buaszczyk, G.; Mazzola, N.C.; Gomes, J.C. Polyethylene Films with Matte Surface. U.S. Patent Application No. 15/740,621, 2018. [Google Scholar]
- Xu, M.M.; Huang, G.Y.; Feng, S.S.; Qin, X.Y.; McShane, G.J.; Stronge, W.J. Perforation Resistance of Aluminum/Polyethylene Sandwich Structure. Mater. Des. 2016, 100, 92–101. [Google Scholar] [CrossRef]
- Popelka, A.; Krupa, I.; Novák, I.; Al-Maadeed, M.A.S.A.; Ouederni, M. Improvement of Aluminum/Polyethylene Adhesion through Corona Discharge. J. Phys. D. Appl. Phys. 2017, 50, 035204. [Google Scholar] [CrossRef]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic Films for Agricultural Applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Wagner, P. Anti-Fog Additives Give Clear Advantage. Plast. Addit. Compd. 2001, 3, 18–21. [Google Scholar] [CrossRef]
- Dobbin, C. Handbook of Industrial Polyethylene and Technology; Spalding, M.A., Chatterjee, A.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Shlosman, K.; Rosen-Kligvasser, J.; Suckeveriene, R.; Tchoudakov, R.; Narkis, M. Novel Antifog Modification for Controlled Migration and Prolonged Wetting of LLDPE Thin Films. Eur. Polym. J. 2017, 90, 220–230. [Google Scholar] [CrossRef]
- ASTM D1003 Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics; ASTM International: West Conshohocken, PA, USA, 2000.
- Huck, N.D.; Clegg, P.L. The Effect of Extrusion Variables on the Fundamental Properties of Tubular Polythene Film. Polym. Eng. Sci. 1961, 1, 121–132. [Google Scholar] [CrossRef]
- Stein, R.S.; Rhodes, M.B. Photographic Light Scattering by Polyethylene Films. J. Appl. Phys. 1960, 31, 1873–1884. [Google Scholar] [CrossRef]
- Bheda, J.H.; Spruiell, J.E. The Effect of Process and Polymer Variables on the Light Transmission Properties of Polypropylene Tubular Blown Films. Polym. Eng. Sci. 1986, 26, 736–745. [Google Scholar] [CrossRef]
- Johnson, M.B.; Wilkes, G.L.; Sukhadia, A.M.; Rohlfing, D.C. Optical Properties of Blown and Cast Polyethylene Films: Surface versus Bulk Structural Considerations. J. Appl. Polym. Sci. 2000, 77, 2845–2864. [Google Scholar] [CrossRef]
- Kalfoglou, N.K.; Skafidas, D.S.; Sotiropoulou, D.D. Compatibilization of Blends of Poly(Ethylene Terephthalate) and Linear Low Density Polyethylene with the Ionomer of Poly(Ethylene-Co-Methacrylic Acid). Polymer (Guildf). 1994, 35, 3624–3630. [Google Scholar] [CrossRef]
- Silvestrez, C.; Cimmino, S.; Raimo, M.; Duraccio, D.; Del Amo Fernandez, B.; Lafuente, P.; Sanz, V.L. Structure and Morphology Development in Films of MLLDPE/LDPE Blends during Blowing. Macromol. Mater. Eng. 2006, 291, 1477–1485. [Google Scholar] [CrossRef]
- Sukhadia, A.M.; Rohlfing, D.C.; Johnson, M.B.; Wilkes, G.L. A Comprehensive Investigation of the Origins of Surface Roughness and Haze in Polyethylene Blown Films. J. Appl. Polym. Sci. 2002, 85, 2396–2411. [Google Scholar] [CrossRef]
- Wingfield, J.R.J. Treatment of Composite Surfaces for Adhesive Bonding. Int. J. Adhes. Adhes. 1993, 13, 151–156. [Google Scholar] [CrossRef]
- Popelka, A.; Novák, I.; Al-Maadeed, M.A.S.A.; Ouederni, M.; Krupa, I. Effect of Corona Treatment on Adhesion Enhancement of LLDPE. Surf. Coatings Technol. 2018, 335, 118–125. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Selvarajan, V.; Deshmukh, R.R.; Yoganand, P.; Balasubramanian, S.; Maruthamuthu, S. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties. Plasma Sci. Technol. 2013, 15, 56–63. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.J.; Zhang, J. Surface Treatment of LLDPE and LDPE Blends by Nitric Acid, Sulfuric Acid, and Chromic Acid Etching. Colloid Polym. Sci. 2009, 287, 541–548. [Google Scholar] [CrossRef]
- Baldan, A. Adhesively-Bonded Joints and Repairs in Metallic Alloys, Polymers and Composite Materials: Adhesives, Adhesion Theories and Surface Pretreatment. J. Mater. Sci. 2004, 39, 1–49. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, L.; Su, F.; Ji, Y.; Ali, S.; Zhao, H.; Meng, L.; Li, L. From Molecular Entanglement Network to Crystal-Cross-Linked Network and Crystal Scaffold during Film Blowing of Polyethylene: An in Situ Synchrotron Radiation Small- and Wide-Angle X - Ray Scattering Study. Macromolecules 2018, 51, 4350–4362. [Google Scholar] [CrossRef]
- Zhang, R.; Ji, Y.X.; Zhang, Q.L.; Ju, J.Z.; Sarmad, A.; Li, L.F.; Zhao, H.Y.; Li, L.B. A Universal Blown Film Apparatus for in Situ X-Ray Measurements. Chinese J. Polym. Sci. 2017, 35, 1508–1516. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Q.; Li, L.; Chen, W.; Wang, D.; Meng, L.; Li, L. Synergistic and Competitive Effects of Temperature and Flow on Crystallization of Polyethylene during Film Blowing. ACS Appl. Polym. Mater. 2019, 1, 1590–1603. [Google Scholar] [CrossRef]
- Li, L.; Ji, Y.; Zhang, Q.; Zhao, H.; Ali, S.; Chen, P.; Xia, Z.; Chen, W. Structural Evolution and Phase Transition of Uniaxially Stretched Poly(Butylene Adipate-Co-Butylene Terephthalate) Films as Revealed by in Situ Synchrotron Radiation Small and Wide Angle X-Ray Scattering. CrystEngComm 2019, 21, 118–127. [Google Scholar] [CrossRef]
- Li, L.-B. In Situ Synchrotron Radiation Techniques: Watching Deformation-Induced Structural Evolutions of Polymers. Chinese J. Polym. Sci. 2018, 36, 1093–1102. [Google Scholar] [CrossRef]
- Chen, W.; Liu, D.; Li, L. Multiscale Characterization of Semicrystalline Polymeric Materials by Synchrotron Radiation X-Ray and Neutron Scattering. Polym. Cryst. 2018, 1–14. [Google Scholar] [CrossRef]
- Hammersley, A.P. FIT2D: A Multi-Purpose Data Reduction, Analysis and Visualization Program. J. Appl. Crystallogr. 2016, 49, 646–652. [Google Scholar] [CrossRef]
- Ju, J.; Tian, N.; Wang, Z.; Su, F.; Yang, H.; Chang, J.; Li, X.; Ali, S.; Lin, Y.; Li, L. Precursor Assisted Crystallization in Cross-linked Isotactic Polypropylene. Polymer. 2019, 180, 121674. [Google Scholar] [CrossRef]
- Liu, Z.H.; Brown, N.M.D.; McKinley, A. Characterisation of Oxygen Plasma-Modified Mica Surfaces Using XPS and AFM. Appl. Surf. Sci. 1997, 108, 319–332. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of Lead, Copper, Cadmium, Zinc, and Nickel from Aqueous Solutions by Alkali-Modified Biochar: Batch and Column Tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Z.; Li, L. Flow-Induced Crystallization of Polymers: Molecular and Thermodynamic Considerations. Macromolecules 2016, 49, 1505–1517. [Google Scholar] [CrossRef]
- Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers. Chem. Rev. 2018, 118, 1840–1886. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Yang, X.; Dong, B.; Zhao, J.; Lv, F.; Ji, Y.; Liu, C. Investigation on Phase Transition From Flow-induced Oriented Form II to I in Isotactic Polybutene-1 with In-situ Microbeam X-ray Diffraction Technique. Polymer. 2019, 179, 121719. [Google Scholar] [CrossRef]
Formula | Density (g/cm3) | Melt Flow Index (g/10 min) | Mw (kg/mol) | PDI |
---|---|---|---|---|
LLDPE1 | 0.917 | 0.8 | 133 | 4.2 |
LLDPE2 | 0.919 | 1.0 | 151 | 4.9 |
LDPE | 0.923 | 0.75 | 109 | 5.1 |
EMAA | 0.940 | 1.3 | — | — |
TUR-5 | TUR-10 | TUR-15 | TUR-20 | TUR-25 | TUR-30 | |
---|---|---|---|---|---|---|
vt (mm/s) | 11.9 | 23.9 | 35.4 | 47.3 | 59.3 | 71.1 |
TUR | 5 | 10 | 15 | 20 | 25 | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Ji, Y.; Zhang, Q.; Zhao, H.; Chen, W.; Wang, D.; Meng, L.; Li, L. Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers 2019, 11, 1565. https://doi.org/10.3390/polym11101565
Ali S, Ji Y, Zhang Q, Zhao H, Chen W, Wang D, Meng L, Li L. Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers. 2019; 11(10):1565. https://doi.org/10.3390/polym11101565
Chicago/Turabian StyleAli, Sarmad, Youxin Ji, Qianlei Zhang, Haoyuan Zhao, Wei Chen, Daoliang Wang, Lingpu Meng, and Liangbin Li. 2019. "Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing" Polymers 11, no. 10: 1565. https://doi.org/10.3390/polym11101565
APA StyleAli, S., Ji, Y., Zhang, Q., Zhao, H., Chen, W., Wang, D., Meng, L., & Li, L. (2019). Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers, 11(10), 1565. https://doi.org/10.3390/polym11101565