Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Photocuring
3.2. Analysis of Chain Length
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, M.; Chen, E.Y.-X. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Shirai, M. Photocrosslinkable polymers with degradable properties. Polym. J. 2014, 46, 859–865. [Google Scholar] [CrossRef]
- Ma, S.; Webster, D.C. Degradable thermosets based on labile bonds or linkages: A review. Prog. Polym. Sci. 2018, 76, 65–110. [Google Scholar] [CrossRef]
- Ogino, K.; Chen, J.-S.; Ober, C.K. Synthesis and Characterization of Thermally Degradable Polymer Networks. Chem. Mater. 1998, 10, 3833–3838. [Google Scholar] [CrossRef]
- Wilbon, P.A.; Swartz, J.L.; Meltzer, N.R.; Brutman, J.P.; Hillmyer, M.A.; Wissinger, J.E. Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustain. Chem. Eng. 2017, 5, 9185–9190. [Google Scholar] [CrossRef]
- Roy, M.; Noordzij, G.J.; van den Boomen, Y.; Rastogi, S.; Wilsens, C.H.R.M. Renewable (Bis)pyrrolidone Based Monomers as Components for Thermally Curable and Enzymatically Depolymerizable 2-Oxazoline Thermoset Resins. ACS Sustain. Chem. Eng. 2018, 6, 5053–5066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Xu, Z.; Wang, Y.; Chen, S.; Miao, M.; Zhang, D. Synthesis and Degradation Mechanism of Self-Cured Hyperbranched Epoxy Resins from Natural Citric Acid. ACS Omega 2018, 3, 8141–8148. [Google Scholar] [CrossRef]
- Zhang, Q.; Phillips, H.R.; Purchel, A.; Hexum, J.K.; Reineke, T.M. Sustainable and Degradable Epoxy Resins from Trehalose, Cyclodextrin, and Soybean Oil Yield Tunable Mechanical Performance and Cell Adhesion. ACS Sustain. Chem. Eng. 2018, 6, 14967–14978. [Google Scholar] [CrossRef]
- Okamura, H.; Nomura, K.; Matsumoto, A. Photo-degradation of Reworkable Resin: A Mechanical Study. J. Photopolym. Sci. Technol. 2017, 30, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Okamura, H.; Matsumoto, A.; Minokami, K.; Miyauchi, S. Photo-thermal Dual Curing of Polysilane/diarylfluorene Blends-Fabrication of Films with High and Tunable Refractive Indices. J. Photopolym. Sci. Technol. 2018, 31, 503–510. [Google Scholar] [CrossRef]
- Burdick, J.A.; Lovestead, T.M.; Anseth, K.S. Kinetic Chain Lengths in Highly Cross-Linked Networks Formed by the Photoinitiated Polymerization of Divinyl Monomers: A Gel Permeation Chromatography Investigation. Biomacromolecules 2003, 4, 149–156. [Google Scholar] [CrossRef]
- Shirai, M.; Mitsukura, K.; Okamura, H. Chain Propagation in UV Curing of Di(meth)acrylates. Chem. Mater. 2008, 20, 1971–1976. [Google Scholar] [CrossRef]
- Matsukawa, D.; Okamura, H.; Shirai, M. Reworkable dimethacrylates with low shrinkage and their application to UV nanoimprint lithography. J. Mater. Chem. 2011, 21, 10407–10414. [Google Scholar] [CrossRef]
- Okamura, H.; Shirai, M. Reworkable Resin using Thiol-ene System. J. Photopolym. Sci. Technol. 2011, 24, 561–564. [Google Scholar] [CrossRef]
- Roper, T.M.; Kwee, T.; Lee, T.Y.; Guymon, C.A.; Hoyle, C.E. Photopolymerization of pigmented thiol-ene systems. Polymer 2004, 45, 2921–2929. [Google Scholar] [CrossRef]
- Zhou, H.; Li, Q.; Shin, J.; Hoyle, C.E. Effects of Monomer Functionality and Hydrogen Bonding on the Polymerization Kinetics and Properties of Thiol-Ene Networks. Macromolecules 2009, 42, 2994–2999. [Google Scholar] [CrossRef]
- Shin, J.; Nazarenko, S.; Hoyle, C.E. Effects of Chemical Modification of Thiol-Ene Networks on Enthalpy Relaxation. Macromolecules 2009, 42, 6549–6557. [Google Scholar] [CrossRef]
- Kwisnek, L.; Kaushik, M.; Hoyle, C.E.; Nazarenko, S. Free Volume, Transport, and Physical Properties of n-Alkyl Derivatized Thiol-Ene Networks: Chain Length Effect. Macromolecules 2010, 43, 3859–3867. [Google Scholar] [CrossRef]
- Kwisnek, L.; Nazarenko, S.; Hoyle, C.E. Free Volume, Oxygen Transport Properties of Thiol-Ene Networks. Macromolecules 2009, 42, 7031–7041. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, H.; Hoyle, C.E. The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties. Polymer 2009, 50, 2237–2245. [Google Scholar] [CrossRef]
- Lee, T.Y.; Smith, Z.; Reddy, S.R.; Cramer, N.B.; Bowman, C.N. Thiol-Allyl Ether-Methacrylate Ternary Systems. Polymerization Mechanism. Macromolecules 2007, 40, 1466–1472. [Google Scholar] [CrossRef]
- Kloxin, C.J.; Scott, T.F.; Bowman, C.N. Stress Relaxation via Addition-Fragmentation Chain Transfer in a Thiol-ene Photopolymerization. Macromolecules 2009, 42, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.A.; Jankousky, K.C.; Bowman, C.N. Thiol-ene functionalized siloxanes for use aselastomeric dental impression materials. Dent. Mater. 2014, 30, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, M.; Becka, E.; Chatani, S.; Claudino, M.; Bowman, C.N. Ester-free thiol-X resins: New materials with enhanced mechanical behavior and solvent resistance. Polym. Chem. 2015, 6, 2234–2240. [Google Scholar] [CrossRef]
- Sparks, B.J.; Hoff, E.F.T.; Hayes, L.T.P.; Patton, D.L. Mussel-Inspired Thiol-Ene Polymer Networks: Influencing Network Properties and Adhesion with Catechol Functionality. Chem. Mater. 2012, 24, 3633–3642. [Google Scholar] [CrossRef]
- Reit, R.; Zamorano, D.; Parker, S.; Simon, D.; Lund, B.; Voit, W.; Ware, T.H. Hydrolytically Stable Thiol-ene Networks for Flexible Bioelectronics. ACS Appl. Mater. Interfaces 2015, 7, 28673–28681. [Google Scholar] [CrossRef] [PubMed]
- Kwisnek, L.; Goetz, J.; Meyers, K.P.; Heinz, S.R.; Wiggins, J.S.; Nazarenko, S. PEG Containing Thiol-Ene Network Membranes for CO2 Separation: Effect of Cross-Linking on Thermal, Mechanical, and Gas Transport Properties. Macromolecules 2014, 47, 3243–3253. [Google Scholar] [CrossRef]
- McNair, O.D.; Sparks, B.J.; Janisse, A.P.; Brent, D.P.; Derek, L.; Patton, D.P.; Savin, D.A. Highly Tunable Thiol-Ene Networks via Dual Thiol Addition. Macromolecules 2013, 46, 5614–5621. [Google Scholar] [CrossRef]
- Fleischmann, E.-K.; Forst, F.R.; Köder, K.; Kapernaum, N.; Zentel, R. Microactuators from a main-chain liquid crystalline elastomer via thiol-ene “click” chemistry. J. Mater. Chem. C 2013, 1, 5885–5891. [Google Scholar] [CrossRef]
- McNair, O.D.; Janisse, A.P.; Krzeminski, D.E.; Brent, D.E.; Gould, T.E.; Rawlins, J.W.; Savin, D.A. Impact Properties of Thiol-Ene Networks. ACS Appl. Mater. Interfaces 2013, 5, 11004–11013. [Google Scholar] [CrossRef]
- McNair, O.D.; Gould, T.E.; Piland, S.G.; Savin, D.A. Characterization of Mouthguard Materials: A Comparison of a Commercial Material to a Novel Thiolene Family. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Da Silva Filho, E.B.; Stiegman, A.E. High Refractive Index Polymer Composites Synthesized by Cross-Linking of Oxozirconium Clusters Through Thiol-Ene Polymerization. Macromol. Mater. Eng. 2015, 300, 580–585. [Google Scholar] [CrossRef]
- Davis, A.R.; Carter, K.R. Controlling Optoelectronic Behavior in Poly(fluorene) Networks Using Thiol-Ene Photo-Click Chemistry. Macromolecules 2015, 48, 1711–1722. [Google Scholar] [CrossRef]
- Michal, B.T.; Brenn, W.A.; Nguyen, B.N.; McCorkle, L.S.; Meador, M.A.B.; Rowan, S.J. Thermoresponsive Shape-Memory Aerogels from Thiol-Ene Networks. Chem. Mater. 2016, 28, 2341–2347. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, G.; Xu, S.; Zhang, X.; Shen, X.; Cui, X.; Gao, Y.; Nie, J. A Novel Shape Memory Poly(ε-caprolactone) Network via UV-Triggered Thiol-Ene Reaction. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 692–701. [Google Scholar] [CrossRef]
- Okamura, H.; Muramatsu, K.; Nakajiri, H.; Shirai, M.; Matsumoto, A. Photoresists for Screen Printing Plates with High Resolution and Sensitivity Using Thiol-ene Reaction. J. Photopolym. Sci. Technol. 2015, 28, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Feillée, N.; De Fina, M.; Ponche, A.; Vaulot, C.; Rigolet, S.; Jacomine, L.; Majjad, H.; Ley, C.; Chemto, A. Step-Growth Thiol-Thiol Photopolymerization as Radiation Curing Technology. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 117–128. [Google Scholar] [CrossRef]
Formulation 1 | [(meth)acryl Unit/Thiol Unit] | Conversion (%) 2 | Insoluble Fraction (%) | Mp3 | Mw4 | Mn5 | Mw/Mn | n6 | Atmos-phere | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DHDA | DHDMA | BzA | PEMB | TPMB | BDMB | (meth) acryl Unit | Thiol Unit | ||||||||
1 | 1 | 1/1 | 99 | 35 | 99 | 700 | 1200 | 820 | 1.5 | 3.7 | N2 | ||||
1 | 1 | 1/1 | 96 | 33 | 99 | 740 | 1000 | 760 | 1.3 | 4.2 | air | ||||
2 | 1 | 2/1 | 90 | 47 | 91 | 920 | 1400 | 950 | 1.5 | 9.8 | N2 | ||||
1 | 1 | 1/1 | 92 | 29 | 100 | 620 | 1200 | 700 | 1.7 | 3.2 | N2 | ||||
1 | 1 | 1/1 | 98 | 40 | 98 | 570 | 770 | 600 | 1.3 | 2.7 | N2 | ||||
1 | 1 | 1/1 | 98 | 44 | 91 | 250 | 450 | 260 | 1.7 | 1.7 | N2 | ||||
1 | 1 | 1 | 2/1 | 96 | 25 | 96 | 1490 | 1900 | 1300 | 1.4 | 7.6 | N2 | |||
1 | 3 | 1 | 4/1 | 97 | 14 | 95 | 2740 | 3200 | 2100 | 1.5 | 14 | N2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okamura, H.; Yamagaki, M.; Nakata, K. Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers 2019, 11, 5. https://doi.org/10.3390/polym11010005
Okamura H, Yamagaki M, Nakata K. Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins. Polymers. 2019; 11(1):5. https://doi.org/10.3390/polym11010005
Chicago/Turabian StyleOkamura, Haruyuki, Masashi Yamagaki, and Kyohei Nakata. 2019. "Analysis of Network Structures in Thiol-Ene UV Curing System Using Reworkable Resins" Polymers 11, no. 1: 5. https://doi.org/10.3390/polym11010005