Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Grafting PTFE Micropowder with PMMA
2.3. Formulation of Polyacrylate/PMMA–g–PTFE Composite Films
2.4. Characterization
3. Results and Discussion
3.1. Determination of DG in PMMA–g–PTFE micropowder
3.2. Micromorphology of PMMA–g–PTFE Micropowder
3.3. Polyacrylate/PMMA–g–PTFE Composite Films
3.4. Surface Properties of the Polyacrylate/PMMA–g–PTFE Composite Films
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Blanche, P.A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lin, W.; Gu, T.; Flores, D.; Wang, P.; Hsieh, W.Y.; Kathaperumal, M.; et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 2010, 468, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bae, H.J.; Junhoi, K.; Sunghwan, S.; Eun, C.S.; Hoon, L.S.; Sunghoon, K.; Park, W. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv. Mater. 2012, 24, 5924–5929. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wang, H.; Zhong, Y.; Chu, B.; Su, Y.; He, Y. Fluorescent and magnetic anti-counterfeiting realized by biocompatible multifunctional silicon nanoshuttle-based security ink. Nanoscale 2018, 10, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Cheung, H.H.; Choi, S.H. Implementation issues in RFID-based anti-counterfeiting systems. Comput. Ind. 2011, 62, 708–718. [Google Scholar] [CrossRef]
- Hongki, K.; Woong, L.J.; Yoonkey, N. Inkjet-printed multiwavelength thermoplasmonic images for anticounterfeiting applications. ACS Appl. Mater. Interfaces 2018, 10, 6764–6771. [Google Scholar]
- Peng, H.Y.; Bi, S.G.; Ni, M.L.; Xie, X.L.; Liao, Y.G.; Zhou, X.P.; Xue, Z.G.; Zhu, J.T.; Wei, Y.; Bowman, C.N.; et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images. J. Am. Chem. Soc. 2014, 136, 8855–8858. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.N.; Ni, M.L.; Peng, H.Y.; Huang, F.H.; Liao, Y.G.; Wang, M.K.; Zhu, J.T.; Roy, V.A.L.; Xie, X.L. Photoinitiation and inhibition under monochromatic green light for storage of colored 3D images in holographic polymer-dispersed liquid crystals. ACS Appl. Mater. Interfaces 2017, 9, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.L.; Peng, H.Y.; Liao, Y.G.; Yang, Z.F.; Xue, Z.G.; Xie, X.L. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”. Macromolecules 2015, 48, 2958–2966. [Google Scholar] [CrossRef]
- Zheng, C.F.; Yang, Z.F.; Lv, C.C.; Zhou, X.P.; Xie, X.L. Thermal stability and abrasion resistance of polyacrylate/nano-silica hybrid coatings. Iran. Polym. J. 2013, 22, 465–471. [Google Scholar] [CrossRef]
- Zheng, C.F.; Cheng, F.; Zhang, J.J.; Zhou, X.P.; Zeng, F.D.; Xie, X.L. Laser holographic material based on acrylic resin blend with intermolecular hydrogen bonding. J. Funct. Mater. 2010, 41, 386–389. [Google Scholar]
- Zheng, C.F.; Zhu, S.H.; Zeng, F.D. Study of laser holographic imaging resin modified with PTFE. Chin. Plast. Ind. 2011, 39, 101–103. [Google Scholar]
- Acikgoz, C.; Hempenius, M.A.; Huskens, J.; Vancso, G.J. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur. Polym. J. 2011, 47, 2033–2052. [Google Scholar] [CrossRef]
- Peng, C.Y.; Chen, Z.Y.; Tiwari, M.K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat. Mater. 2018, 17, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Schlaich, C.; Prévost, S.; Schulz, A.; Böttcher, C.; Gradzielski, M.; Qi, Z.H.; Haag, R.; Schalley, C.A. Supramolecular polymers as surface coatings: Rapid fabrication of healable superhydrophobic and slippery surfaces. Adv. Mater. 2014, 26, 7358–7364. [Google Scholar] [CrossRef] [PubMed]
- Rachele, P.; Villani, V.; Ballesteros, O.R.D. Miscibility study in fluorinated tetrafluoroethylene copolymer–copolymer blends. Macromolecules 2001, 34, 1764–1771. [Google Scholar]
- Gong, D.W.; Long, J.Y.; Fan, P.X.; Jiang, D.F.; Zhang, H.J.; Zhong, M.L. Thermal stability of micro–nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template. Appl. Surf. Sci. 2015, 331, 437–443. [Google Scholar] [CrossRef]
- Wang, Z.F.; Wang, Z.G. Synthesis of cross-linkable fluorinated core-shell latex nanoparticles and the hydrophobic stability of films. Polymer 2015, 74, 216–223. [Google Scholar] [CrossRef]
- Tran, M.Q.; Ho, K.K.C.; Kalinka, G.; Shaffer, M.S.P.; Bismarck, A. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 2008, 68, 1766–1776. [Google Scholar] [CrossRef]
- Lu, D.P.; Xiong, P.T.; Chen, P.Z.; Huang, H.Z.; Shen, L.; Guan, R. Preparation of acrylic copolymer latex modified by fluorine, silicon, and epoxy resin. J. Appl. Polym. Sci. 2009, 112, 181–187. [Google Scholar] [CrossRef]
- Alaaeddine, A.; Boschet, F.; Ameduri, B. Synthesis of methallylic monomers bearing ammonium side-groups and their radical copolymerization with chlorotrifluoroethylene. J. Polym. Sci. Part A 2014, 52, 1721–1729. [Google Scholar] [CrossRef]
- Jaṅczuk, B.; Zdziennicka, A.; Wȯjcik, W. Relationship between wetting of teflon by cetyltrimethylammonium bromide solution and adsorption. Eur. Polym. J. 1997, 33, 1093–1098. [Google Scholar] [CrossRef]
- Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S. Surface modification and adhesion improvement of PTFE film by ion beam irradiation. Nucl. Instrum. Methods B 2004, 219–220, 963–967. [Google Scholar] [CrossRef]
- Lee, M.K.; Park, C.; Jang, T.S.; Kim, H.E.; Jeong, S.H. Enhanced mechanical stability of PTFE coating on nano-roughened NiTi for biomedical applications. Mater. Lett. 2018, 216, 12–15. [Google Scholar] [CrossRef]
- Kang, E.T.; Zhang, Y. Surface modification of fluoropolymers via molecular design. Adv. Mater. 2000, 12, 1481–1494. [Google Scholar] [CrossRef]
- Zhang, M.C.; Kang, E.T.; Neoh, K.G.; Tan, K.L. Surface modification of aluminum foil and PTFE film by graft polymerization for adhesion enhancement. Colloid Surf. A 2001, 176, 139–150. [Google Scholar] [CrossRef]
- Harald, H.; Navneet, S.; Tahir, S.; Erich, K.; Kurt, W.; Elias, S. Influence of plasma pre-treatment of polytetrafluoroethylene (PTFE) micropowders on the mechanical and tribological performance of polyethersulfone (PESU)–PTFE composites. Wear 2015, 328–329, 480–487. [Google Scholar]
- Kim, S.R. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920. [Google Scholar] [CrossRef]
- Bucio, E.; Burillo, G. Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiat. Phys. Chem. 2007, 76, 1724–1727. [Google Scholar] [CrossRef]
- Carlo, S.R.; Wagne, A.J.; Fairbrother, D.H. Iron metalization of fluorinated organic films: A combined X-ray photoelectron spectroscopy and atomic force microscopy study. J. Phys. Chem. B 2000, 104, 6633–6641. [Google Scholar] [CrossRef]
- Ishikawa, K.; Sumi, N.; Kono, A.; Horibe, H.; Takeda, K.; Kondo, H.; Sekine, M.; Hori, M. Synergistic formation of radicals by irradiation with both vacuum ultraviolet and atomic hydrogen: A real-time in situ electron spin resonance study. J. Phys. Chem. Lett. 2011, 2, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Moura, E.; Somessari, E.S.R.; Silveira, C.G.; Paes, H.A.; Souza, C.A.; Fernandes, W.; Manzoli, J.E.; Geraldo, A.B.C. Influence of physical parameters on mutual polymer grafting by electron beam irradiation. Radiat. Phys. Chem. 2011, 80, 175–181. [Google Scholar] [CrossRef]
- Sun, H.X.; Zhang, L.; Chai, H.; Chen, H.L. Surface modification of poly(tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid. Desalination 2006, 192, 271–279. [Google Scholar] [CrossRef]
- Dorschner, H.; Lappan, U.; Lunkwitz, K. Electron beam facility in polymer research: Radiation induced functionalization of polytetrafluoroethylene. Nucl. Instrum. Methods B 1998, 139, 495–501. [Google Scholar] [CrossRef]
- Chapiro, A. Preparation of grafted copolymers of polytetrafluoroethylene(teflon) by radiation chemistry. J. Appl. Polym. Sci. 1959, 34, 481–501. [Google Scholar] [CrossRef]
- Chapiro, A.; Matsumoto, A. Influence de la temperature sur le greffage du styrene sur des films de polytetrafluoroéthylène et de poly(chlorure de vinyle) par la méthode radiochimique directe. J. Appl. Polym. Sci. 1962, 57, 743–761. [Google Scholar] [CrossRef]
- Lappan, U.; Geissler, U.; Gohs, U.; Uhlmann, S. Grafting of styrene into pre-irradiated fluoropolymer films: Influence of base material and irradiation temperature. Radiat. Phys. Chem. 2010, 79, 1067–1072. [Google Scholar] [CrossRef]
- Li, J.; Sato, K.; Ichizuri, S.; Asano, S.; Ikeda, S.; Iida, M.; Oshima, A.; Tabata, Y.; Washio, M. Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. II: Characterization of the styrene grafted films. Eur. Polym. J. 2005, 41, 547–555. [Google Scholar] [CrossRef]
- Hidzir, N.M.; Hill, D.J.T.; Martin, D.; Grøndahl, L. Radiation-induced grafting of acrylic acid onto expanded poly(tetrafluoroethylene) membranes. Polymer 2012, 53, 6063–6071. [Google Scholar] [CrossRef]
- Adem, E.; Avalos, B.M.; Bucio, E.; Burillo, G.; Castillon, F.F.; Cota, L. Surface characterization of binary grafting of AAC/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nucl. Instrum. Methods B 2005, 234, 471–476. [Google Scholar] [CrossRef]
- Lappan, U.; Geissler, U.; Uhlmann, S. Radiation-induced grafting of styrene into radiation-modified fluoropolymer films. Nucl. Instrum. Methods B 2005, 236, 413–419. [Google Scholar] [CrossRef]
- Xiong, C.H.; Yao, C.P. Preparation and application of acrylic acid grafted polytetrafluoroethylene fiber as a weak acid cation exchanger for adsorption of Er(III). J. Hazard. Mater. 2009, 170, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tan, K.L.; Kang, E.T.; Neoh, K.G. Antifouling poly(vinylidene fluoride) microporous membranes prepared via plasma-induced surface grafting of poly(ethylene glycol). J. Adhes. Sci. Technol. 2002, 16, 111–127. [Google Scholar] [CrossRef]
- Klüpfel, B.; Lehmann, D. Functionalization of irradiated PTFE micropowder with methacryl- or hydroxy groups for chemical coupling of PTFE with different matrix polymers. J. Appl. Polym. Sci. 2006, 101, 2819–2824. [Google Scholar] [CrossRef]
- Hoffmann, T.; Heller, M.; Jehnichen, D.; Engelhardt, T.; Lehmann, D. Influence of absorbing materials on the functionalization of poly(tetrafluoroethylene) during γ-irradiation. J. Appl. Polym. Sci. 2013, 130, 1787–1793. [Google Scholar] [CrossRef]
- Wang, X.B.; Wu, G.Z. Grafting of acrylic acid onto polytetrafluoroethylene(PTFE) micropowder via pre-irradiation. J. Nucl. Radiochem. 2008, 30, 238–242. [Google Scholar]
- Yang, C.Q.; Xu, L.; Zeng, H.Y.; Tang, Z.F.; Zhong, L.; Wu, G.Z. Water dispersible polytetrafluoroethylene microparticles prepared by grafting of poly(acrylic acid). Radiat. Phys. Chem. 2014, 103, 103–107. [Google Scholar] [CrossRef]
- Li, H.; Zeng, H.Y.; Xing, Z.; Li, R.; Gao, Q.H.; Wang, H.L.; Wu, G.Z. Preparation of high hydrophilic PTFE powder and its dispersion stability. Acta Polym. Sin. 2016, 9, 1247–1253. [Google Scholar]
- Szymczyk, K. Correlation between the adsorption of the fluorocarbon surfactants at the polymer–solution and solution–air interfaces and the parameter of the interfacial interaction. Nature 2012, 328, 260–263. [Google Scholar] [CrossRef]
- Chen, W.; Rong, C.J. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation. Appl. Surf. Sci. 2007, 253, 4599–4606. [Google Scholar]
- Shulga, Y.M.; Vasilets, V.N.; Kiryukhin, D.P.; Voylov, D.N.; Sokolov, A.P. Polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material: Synthesis and characterization. RCS Adv. 2015, 5, 9865–9874. [Google Scholar] [CrossRef]
- Chen, F.T.; Jiang, X.S.; Liu, R.; Yin, J. Well-defined PMMA brush on silica particles fabricated by surface-initiated photopolymerization (SIPP). ACS Appl. Mater. Interfaces 2010, 2, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Dargaville, T.R.; George, G.A.; Hill, D.J.T.; Whittaker, A.K. High energy radiation grafting of fluoropolymers. Prog. Polym. Sci. 2003, 28, 1355–1376. [Google Scholar] [CrossRef]
- Nasef, M.M.; Hegazy, E.S.A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.K.; Wang, J.L.; Shen, L.Q.; Men, D.F.; Xu, Y.Y. Microporous polypropylene hollow fiber membrane: Part I. Surface modification by the graft polymerization of acrylic acid. J. Membr. Sci. 2002, 196, 221–229. [Google Scholar] [CrossRef]
- Su, J.L.; Wu, G.Z.; Liu, Y.D.; Zeng, H.Y. Study on polytetrafluoroethylene aqueous dispersion irradiated by gamma ray. J. Fluor. Chem. 2006, 127, 91–96. [Google Scholar] [CrossRef]
- Lee, E.J.; Jung, C.H.; Hwang, I.T.; Choi, J.H.; Cho, S.O.; Nho, Y.C. Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces. ACS Appl. Mater. Interfaces 2011, 3, 2988–2993. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.Y.; Xu, Y.Y.; Zhu, L.P.; Zhu, B.K. Modification of polytetrafluoroethylene porous membranes by electron beam initiated surface grafting of binary monomers. J. Membr. Sci. 2009, 339, 33–38. [Google Scholar] [CrossRef]
- Jiang, W.; Zuo, C.W.; Hu, J.L.; Gu, Q.; Chen, W.; Xue, G. Enthalpy relaxation near the glass transition of polystyrenes with controlled interchain proximity. Macromolecules 2008, 41, 5356–5360. [Google Scholar] [CrossRef]
- An, Q.F.; Chen, J.T.; Guzman, M.D.; Hung, W.S.; Lee, K.R.; Lai, J.Y. Multilayered poly(vinylidene fluoride) composite membranes with improved interfacial compatibility: Correlating pervaporation performance with free volume properties. Langmuir 2011, 27, 11062–11070. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.F.; Liu, Y.D.; Choi, H.J.; Seo, Y. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. Acs Appl. Mater. Interfaces 2011, 3, 3487–3495. [Google Scholar] [CrossRef] [PubMed]
- Jamison, J.A.; Krueger, K.M.; Yavuz, C.T.; Mayo, J.T.; Lecrone, D.; Redden, J.J.; Colvin, V.L. Size-dependent sedimentation properties of nanocrystals. ACS Nano 2008, 2, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, K.C.H.; Gerhard, K.; Michael, Q.T.; Natalya, V.P.; Alexander, B. Fluorinated carbon fibres and their suitability as reinforcement for fluoropolymers. Compos. Sci. Technol. 2007, 67, 2699–2706. [Google Scholar]
- Coclite, A.M.; Shi, Y.J.; Gleason, K.K. Grafted crystalline poly-perfluoroacrylate structures for superhydrophobic and oleophobic functional coatings. Adv. Mater. 2012, 24, 4534–4539. [Google Scholar] [CrossRef] [PubMed]
Entry | Dose (kGy) | DG (%) | Atomic Ratio | Bond Proportion (%) | |||||
---|---|---|---|---|---|---|---|---|---|
F/C | O/C | C–C | C–O | C=O | C–F | CF2 | |||
1 | 0 | 0 | 1.82 | 0.005 | 1.37 | 0 | 0 | 0 | 98.63 |
2 | 20 | 1.4 | 1.69 | 0.01 | 3.59 | 2.34 | 2.56 | 38.67 | 52.84 |
3 | 40 | 5.1 | 1.67 | 0.02 | 3.65 | 2.31 | 2.78 | 49.65 | 41.61 |
4 | 60 | 7.7 | 1.65 | 0.03 | 7.28 | 2.75 | 3.39 | 52.89 | 33.69 |
5 | 80 | 9.8 | 1.52 | 0.05 | 11.56 | 4.18 | 3.98 | 53.14 | 27.14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wen, Y.; Peng, H.; Zheng, C.; Li, Y.; Wang, S.; Sun, S.; Xie, X.; Zhou, X. Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization. Polymers 2018, 10, 503. https://doi.org/10.3390/polym10050503
Wang H, Wen Y, Peng H, Zheng C, Li Y, Wang S, Sun S, Xie X, Zhou X. Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization. Polymers. 2018; 10(5):503. https://doi.org/10.3390/polym10050503
Chicago/Turabian StyleWang, Hui, Yingfeng Wen, Haiyan Peng, Chengfu Zheng, Yuesheng Li, Sheng Wang, Shaofa Sun, Xiaolin Xie, and Xingping Zhou. 2018. "Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization" Polymers 10, no. 5: 503. https://doi.org/10.3390/polym10050503
APA StyleWang, H., Wen, Y., Peng, H., Zheng, C., Li, Y., Wang, S., Sun, S., Xie, X., & Zhou, X. (2018). Grafting Polytetrafluoroethylene Micropowder via in Situ Electron Beam Irradiation-Induced Polymerization. Polymers, 10(5), 503. https://doi.org/10.3390/polym10050503