Next Article in Journal
Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer
Previous Article in Journal
High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors
Article Menu

Export Article

Open AccessArticle
Polymers 2018, 10(11), 1180; https://doi.org/10.3390/polym10111180

Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer as a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications

1
Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
2
School of Mathematical & Computer Sciences, Heriot-Watt University Malaysia, Putrajaya 62200, Malaysia
3
Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
*
Authors to whom correspondence should be addressed.
Received: 18 September 2018 / Revised: 17 October 2018 / Accepted: 19 October 2018 / Published: 23 October 2018
Full-Text   |   PDF [5185 KB, uploaded 23 October 2018]   |  

Abstract

The preparation of chemically reduced graphene oxide (rGO) and the optimization of epoxy resins’ properties using micro or nanofillers are now common practices. rGO nanoparticles (60 nm) based on an epoxy resin polymer were prepared at the concentrations of 0, 1, 2, 3, 4, and 5% weight percentage with fixed 6-mm thicknesses. The dielectric properties of the composites were measured by the reflection/transmission technique in connection with a vector network analyser (VNA) at a frequency range of 8–12 GHz. The microwave absorption and shielding effectiveness properties were calculated by using the reflection S11 and transmission S21 results. The microstructure and morphology of the polymer and the rGO/cured epoxy composites were studied by field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared (FT-IR) spectroscopy, and the X-ray Diffraction (X-RD) technique for characterizing crystalline materials. The dielectric and other properties of the rGO/cured epoxy composites were investigated based on the filler load and frequency. It was found that the applied frequency and the filler concentrations affected the dielectric properties of the rGO/cured epoxy composites. The results showed that the introduction of rGO particles to the composites increased their dielectric properties smoothly. The study of the dependence on frequency of both the dielectric constant ε′ and the dielectric loss ε″ showed a decrease in both quantities with increasing frequency, indicating a normal behaviour of the dielectrics. Cole–Cole plots were drawn with ε′ and ε″. A theoretical simulation in terms of the Cole–Cole dispersion law indicates that the Debye relaxation processes in the rGO/cured epoxy composites are improved due to the presence of the rGO filler. Moreover, with the addition of rGO as a filler into the Epoxy matrix, it now exhibits promise as a lightweight material for microwave absorption as well as an effective electromagnetic interference (EMI) shielding material. View Full-Text
Keywords: reduced graphene oxide; epoxy resins; permittivity; permeability; Cole–Cole reduced graphene oxide; epoxy resins; permittivity; permeability; Cole–Cole
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Ahmad, A.F.; Ab Aziz, S.; Abbas, Z.; Obaiys, S.J.; Khamis, A.M.; Hussain, I.R.; Zaid, M.H.M. Preparation of a Chemically Reduced Graphene Oxide Reinforced Epoxy Resin Polymer as a Composite for Electromagnetic Interference Shielding and Microwave-Absorbing Applications. Polymers 2018, 10, 1180.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top