Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal
Abstract
:1. Introduction
2. Design of GPC Micro-Lens of Polymer Rods in the Air Background
2.1. Basic Structure
2.2. Model Creation
2.3. Focusing Characteristics
3. Electrically Tunable Characteristics of PDLC Based GPC Micro-Lens
3.1. Principle
3.2. Electrically Tunable Micro-Lens
4. The Effect of the Lens Defects and Deviations on Focusing Characteristics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, H.; Wu, S.T. Introduction to Adaptive Lenses; Wiley Series in Pure and Applied Optics; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dong, L.; Agarwal, A.K.; Beebe, D.J.; Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 2006, 442, 551. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cheng, C.M.; Wang, L.; Wang, B.; Su, C.C.; Ho, M.S.; LeDuc, P.R.; Lin, Q. Thermally tunable polymer microlenses. Appl. Phys. Lett. 2008, 92, 251904. [Google Scholar] [CrossRef]
- Hassanfiroozi, A.; Huang, Y.P.; Javidi, B.; Shieh, H.P.D. Hexagonal liquid crystal lens array for 3D endoscopy. Opt. Express 2015, 23, 971. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.P.; Jen, T.H.; Chang, Y.C.; Shieh, P.Y.; Chen, C.W.; Liao, L.Y. Individually adapted LC-lens array for 3D applications. Mol. Cryst. Liquid Cryst. 2014, 605, 267–274. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, H.S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 2013, 21, 9428. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Lin, Y.H. An electrically tunable focusing pico-projector adopting a liquid crystal lens. Jpn. J. Appl. Phys. 2010, 49, 102502. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, M.S.; Lin, H.C. Electrically-tunable optical zoom system by using liquid crystal lenses. In Proceedings of the Advances in Display Technologies II, International Society for Optics and Photonics, San Francisco, CA, USA, 25–26 January 2012. [Google Scholar]
- Vasić, B.; Gajić, R. Self-focusing media using graded photonic crystals: Focusing, Fourier transforming and imaging, directive emission, and directional cloaking. J. Appl. Phys. 2011, 110, 053103. [Google Scholar] [CrossRef]
- Chien, H.T.; Chen, C.C. Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii. Opt. Express 2006, 14, 10759. [Google Scholar] [CrossRef] [PubMed]
- Roux, F.S.; Leon, I.D. Planar photonic crystal gradient index lens, simulated with a finite difference time domain method. Phys. Rev. B 2006, 74, 113103. [Google Scholar] [CrossRef]
- Kurt, H.; Colak, E.; Cakmak, O.; Caglayan, H.; Ozbay, E. The focusing effect of graded index photonic crystals. Appl. Phys. Lett. 2008, 93, 171108. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Gibbons, J.M.; Park, W. Graded negative index lens by photonic crystals. Opt. Express 2008, 16, 16941–16949. [Google Scholar] [CrossRef] [PubMed]
- Falek, E.; Shavit, R. 2D flat lens design made of dielectric cylinders using the array scattering method. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1257–1258. [Google Scholar]
- Scheuer, J. Metasurfaces-based holography and beam shaping: Engineering the phase profile of light. Nanophotonics 2016, 6, 137–152. [Google Scholar] [CrossRef]
- Ye, X.; Qi, L. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today 2011, 6, 608–631. [Google Scholar] [CrossRef]
- Chen, F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev. 2012, 6, 622–640. [Google Scholar] [CrossRef]
- Shen, Y.; Hsu, C.W.; Yeng, Y.X.; Joannopoulos, J.D.; Soljačić, M. Broadband angular selectivity of light at the nanoscale: Progress, applications, and outlook. Appl. Phys. Rev. 2016, 3, 011103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.W.; Wei, Q.H.; Zhang, X. Surface plasmon interference nanolithography. Nano Lett. 2005, 5, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.C.; Chen, M.S.; Lin, Y.H. A Review of Electrically Tunable Focusing Liquid Crystal Lenses. Trans. Electr. Electron. Mater. 2011, 12, 231–236. [Google Scholar] [CrossRef]
- Wang, H.W.; Chang, I.L.; Chen, L.W. Beam manipulating by graded photonic crystal slab made of dielectric elastomer actuators. Opt. Commun. 2012, 285, 5524–5530. [Google Scholar] [CrossRef]
- Olles, J.D.; Vogel, M.J.; Malouin, B.A.; Hirsa, A.H. Optical performance of an oscillating, pinned-contact double droplet liquid lens. Opt. Express 2011, 19, 19399–19406. [Google Scholar] [CrossRef] [PubMed]
- Jewell, S. Polarized Light in Liquid Crystals and Polymers. Liquid Cryst. Today 2009, 18, 59–60. [Google Scholar] [CrossRef] [Green Version]
- Purvis, A. A real-time closed-loop liquid crystal adaptive optics system: First results. Opt. Commun. 1997, 137, 17–21. [Google Scholar]
- Behera, S.; Joseph, J. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures. Opt. Lett. 2016, 41, 3579–3582. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M. Effective dielectric constant of periodic composite structures. Phys. Rev. B 1993, 48, 14936. [Google Scholar] [CrossRef]
- Sun, X.H.; Wu, Y.L.; Liu, W.; Hao, Y.; Jiang, L.D. Luneburg lens composed of sunflower-type graded photonic Crystals. Opt. Commun. 2014, 315, 367–373. [Google Scholar] [CrossRef]
- Prost, J. The Physics of Liquid Crystals; Oxford University Press: London, UK, 1995. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Sun, X.; Wang, S.; Li, W.; Wang, Z. Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal. Crystals 2018, 8, 303. https://doi.org/10.3390/cryst8070303
Qi Y, Sun X, Wang S, Li W, Wang Z. Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal. Crystals. 2018; 8(7):303. https://doi.org/10.3390/cryst8070303
Chicago/Turabian StyleQi, YongLe, XiaoHong Sun, Shuai Wang, WenYang Li, and ZhongYong Wang. 2018. "Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal" Crystals 8, no. 7: 303. https://doi.org/10.3390/cryst8070303
APA StyleQi, Y., Sun, X., Wang, S., Li, W., & Wang, Z. (2018). Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal. Crystals, 8(7), 303. https://doi.org/10.3390/cryst8070303