Large-Diameter Bulk Crystal Growth and Scintillation Characterization of Thallium-Based Ternary Halide Crystals for Detection and Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. 16 mm Diameter Crystal Growth
3.1.1. Intrinsic TlMgCl3
3.1.2. Intrinsic TlCaCl3
3.1.3. Intrinsic TlCaBr3
3.1.4. Intrinsic and Eu-Doped TlCa2Br5
3.1.5. Intrinsic and Eu-Doped Mixed Halide TlCa(Cl,Br)3
3.2. 1-Inch-Diameter Crystal Growth
3.2.1. Intrinsic TlMgCl3
3.2.2. Intrinsic TlCaCl3
3.2.3. Eu-Doped TlSr2I5
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brau, J.E.; Jaros, J.A.; Ma, H. Advances in Calorimetry. Annu. Rev. Nucl. Part. Sci. 2010, 60, 615–644. [Google Scholar] [CrossRef]
- Inorganic Scintillator Library. Available online: https://scintillator.lbl.gov/inorganic-scintillator-library (accessed on 28 March 2024).
- Kim, H.J.; Rooh, G.; Kim, S. Tl2LaCl5 (Ce3+): New fast and efficient scintillator for X- and γ-ray detection. J. Lumin. 2017, 186, 219–222. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K.S. Tl2LaCl5:Ce, high performance scintillator for gamma-ray detectors. Nucl. Instrum. Meth. A 2017, 869, 107–109. [Google Scholar] [CrossRef]
- Shirwadkar, U.; Loyd, M.; Du, M.-H.; van Loef, E.; Ciampi, G.; Pandian, L.S.; Stand, L.; Koschan, M.; Zhuravleva, M.; Melcher, C.; et al. Thallium-based scintillators for high-resolution gamma-ray spectroscopy: Ce3+-doped Tl2LaCl5 and Tl2LaBr5. Nucl. Instrum. Meth. A 2020, 962, 163684. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Burger, A.; Parkhe, H. Latest updates in growth and performance of Ce-doped Tl2LaCl5 and Tl2GdBr5 and Eu-doped TlCa2Br5 and TlSr2I5. Opt. Mater. 2021, 121, 111495. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K.S. Intrinsic scintillators: TlMgCl3 and TlCaI3. J. Cryst. Growth 2017, 475, 216–219. [Google Scholar] [CrossRef]
- van Loef, E.; Pandian, L.; Kaneshige, N.; Ciampi, G.; Stand, L.; Rutstrom, D.; Tratsiak, Y.; Zhuravleva, M.; Melcher, C.; Shah, K. Crystal Growth, Density Functional Theory, and Scintillation Properties of TlCaX3 (X = Cl, Br, I). IEEE Trans. Nucl. Sci. 2023, 70, 1378–1383. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saeki, K.; Nakauchi, S.; Yanagida, T.; Koshimizu, M.; Asai, K. New Intrinsic Scintillator with Large Effective Atomic Number: Tl2HfCl6 and Tl2ZrCl6 Crystals for X-ray and Gamma-ray Detections. Sens. Mater. 2018, 30, 1577–1583. [Google Scholar] [CrossRef]
- Vuong, P.Q.; Tyagi, M.; Kim, S.H.; Kim, H.J. Crystal growth of a novel and efficient Tl2HfCl6 scintillator with improved scintillation characteristics. Cryst. Eng. Comm. 2019, 21, 5898–5904. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Buliga, V.; Motakef, S.; Burger, A. Latest Progress on Advanced Bridgman Method-Grown K2PtCl6 Cubic Structure Scintillator Crystals. IEEE Trans. Nucl. Sci. 2020, 67, 1020–1026. [Google Scholar] [CrossRef]
- Phan, Q.V.; Kim, H.J.; Rooh, G.; Kim, S.H. Tl2ZrCl6 crystal: Efficient scintillator for X- and γ-ray spectroscopies. J. Alloys Compd. 2018, 766, 326–330. [Google Scholar] [CrossRef]
- Kim, H.J.; Rooh, G.; Khan, A.; Kim, S. New Tl2LaBr5: Ce3+ crystal scintillator for γ-rays detection. Nucl. Instrum. Meth. A 2017, 849, 72–75. [Google Scholar] [CrossRef]
- Moretti, F.; Perrodin, D.; Szornel, J.; Bourret, E.D. Full Ce substitution on La in Tl2LaCl5: Impact and performance. Mater. Adv. 2024, 5, 3858–3862. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K. Tl2LiYCl6: Large Diameter, High Performing Dual Mode Scintillator. Crys. Growth Des. 2017, 17, 3960–3964. [Google Scholar] [CrossRef]
- Hawrami, R.; Ariesanti, E.; Buliga, V.; Burger, A. Thallium strontium iodide: A high efficiency scintillator for gamma-ray detection. Opt. Mater. 2020, 100, 109624. [Google Scholar] [CrossRef]
- Feigelson, R.S. Crystal Growth Through the Ages: A Historical Perspective. In Handbook of Crystal Growth; Nishinaga, T., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1A, pp. 1–83. [Google Scholar]
- Table of Isotopes CD-ROM. Available online: https://application.wiley-vch.de/books/info/0-471-35633-6/toi99/toi.htm (accessed on 1 June 2018).
- Table of Isotopes CD-ROM: Energy and Intensity Standards. Available online: https://application.wiley-vch.de/books/info/0-471-35633-6/toi99/www/decay/eandi.pdf (accessed on 1 June 2018).
- FAQ-937 What’s the Difference Between SE and SD of Fitted Parameters in Curve Fitting? Available online: https://www.originlab.com/doc/Quick-Help/SE-SD-Diff-in-Fitting (accessed on 5 January 2025).
- Photomultiplier Tubes and Assemblies for Scintillation Counting & High Energy Physics. Available online: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/High_energy_PMT_TPMZ0003E.pdf (accessed on 17 May 2018).
- NaI(Tl) Scintillation Crystal|Sodium Iodide. Available online: https://www.luxiumsolutions.com/radiation-detection-scintillators/crystal-scintillators/naitl-scintillation-crystals/ (accessed on 8 July 2024).
Compound | ||
---|---|---|
TlMgCl3 | ∅16 mm | ∅1-inch |
TlCaCl3 | ∅16 mm | ∅1-inch |
TlCaBr3 | ∅14 mm | |
TlCa2Br5 | ∅16 mm | |
TlCa2Br5:Eu | ∅16 mm | |
TlCa(Cl,Br)3 | ∅16 mm | |
TlCa(Cl,Br)3:Eu | ∅16 mm | |
TlSr2I5:Eu | ∅16 mm | ∅1-inch |
∅ 16 mm Crystals | ||||
---|---|---|---|---|
Compound | Zeff | ER | Tprimary (ns) | Light Yield (Photons/MeV) |
TlMgCl3 | 69.7 | 4.6% | 338, 572 | 28,000 |
TlCaCl3 | 68.9 | 5.2% | 409 | 22,000 |
TlCaBr3 | 64.3 | 5.3% | 788, 3.28 μs | 54,000 |
TlCa2Br5:Eu | 66.2 | 4.2% | 1.63 μs | 42,000 |
TlCa(Cl,Br)3 | 64.3 | 5.2% | 621 | 71,000 |
TlCa(Cl,Br)3:Eu | 66.3 | 5.5% | 505 | 63,000 |
∅ 1-Inch Crystals | ||||
Compound | Zeff | ER | Tprimary (ns) | Light Yield (Photons/MeV) |
TlMgCl3 | 69.7 | 3.8% | 321, 548 | 28,000 |
TlCaCl3 | 68.9 | 4.6% | 459 | 19,000 |
TlSr2I5:Eu | 68.9 | 3.5% | 395 | 72,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawrami, R.; Ariesanti, E.; Sabet, H. Large-Diameter Bulk Crystal Growth and Scintillation Characterization of Thallium-Based Ternary Halide Crystals for Detection and Imaging. Crystals 2025, 15, 502. https://doi.org/10.3390/cryst15060502
Hawrami R, Ariesanti E, Sabet H. Large-Diameter Bulk Crystal Growth and Scintillation Characterization of Thallium-Based Ternary Halide Crystals for Detection and Imaging. Crystals. 2025; 15(6):502. https://doi.org/10.3390/cryst15060502
Chicago/Turabian StyleHawrami, Rastgo, Elsa Ariesanti, and Hamid Sabet. 2025. "Large-Diameter Bulk Crystal Growth and Scintillation Characterization of Thallium-Based Ternary Halide Crystals for Detection and Imaging" Crystals 15, no. 6: 502. https://doi.org/10.3390/cryst15060502
APA StyleHawrami, R., Ariesanti, E., & Sabet, H. (2025). Large-Diameter Bulk Crystal Growth and Scintillation Characterization of Thallium-Based Ternary Halide Crystals for Detection and Imaging. Crystals, 15(6), 502. https://doi.org/10.3390/cryst15060502