Damage Simulation Study of Composite-to-Metal Interference-Fit with Multiple Structural Parameters
Abstract
:1. Introduction
2. Simulation Basis
2.1. Material Parameters
2.2. Damage Initiation Criteria
2.3. Damage Evolution Model
3. Modeling and Simulation
3.1. Interference-Fit Numerical Model
3.2. Simulation of Interference-Fit with Different Relative Wall Thicknesses and Layup Sequences of the Sleeve
3.3. Validation of Structural Parameters in Composite Structure Design
4. Results and Discussion
4.1. Simulation Results Under Axial Layup
4.2. Simulation Results Under Radial Layup
4.3. Verification of Accuracy of Simulation Results
5. Conclusions
- (1)
- For the T800/924C carbon fiber composite sleeve under axial layup, the maximum interference is 0.1% at relative wall thicknesses of 5%, 10%, and 15%, reaches 0.2% at a relative wall thickness of 20%, and an interference-fit is not possible when the relative wall thickness is 25%.
- (2)
- With the condition of radial layup, the maximum interference is 0.1% at relative wall thicknesses of 5%, 10%, and 15%, and reaches 0.2% at relative wall thicknesses of 20% and 25%.
- (3)
- With the condition of radial layup, the stress distribution on the inner surface of the sleeve is more uniform. Radial layup effectively avoids local stress concentration compared to axial layup. Radial layup can effectively address the issue of the inability to achieve interference-fit when the relative wall thickness is too large in the axial layup, enabling a maximum interference of 0.2% at a relative wall thickness of 25%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, X.; Wang, H.; Geng, W.; Yang, L.; Wang, J. The Effect of the Modified Starch with Side Chain on the Morphology of Copper Particles and the Antibacterial Properties of Starch/Copper Composite Material. Int. J. Biol. Macromol. 2024, 283, 137488. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Li, X.; Zhu, Y. Support Stiffness Effects on Damage Behavior of Thin-Walled Composite Interference-Fit Joints in the Installation. Eng. Fail. Anal. 2024, 156, 107841. [Google Scholar] [CrossRef]
- Fazeli, M.; Islam, S.; Baniasadi, H.; Abidnejad, R.; Schlapp-Hackl, I.; Hummel, M.; Lipponen, J. Exploring the Potential of Regenerated Ioncell Fiber Composites: A Sustainable Alternative for High-Strength Applications. Green Chem. 2024, 26, 6822–6835. [Google Scholar] [CrossRef]
- Sajid, Z.; Karuppanan, S.; Kee, K.E.; Sallih, N.; Shah, S.Z.H. Bearing Performance Improvement of Single-Lap, Single-Bolt Basalt Composite Joints by Locally Strengthening the Joint Location Using Carbon Fibre. Thin-Walled Struct. 2022, 180, 109873. [Google Scholar] [CrossRef]
- Van Der Sypt, P.; Cherif, M.; Bois, C. Analysis of the Fatigue Behaviour of Laminated Composite Holes Subjected to Pin-Bearing Loads. Int. J. Fatigue 2017, 103, 86–98. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, K. An Experimental Study on Fatigue Life of Interference-Fit Composite Joint. Acta Aeronaut. Astronaut. Sin. 1991, 12, B545–B549. [Google Scholar]
- Yao, C.; Qi, Z.; Chen, W. Lightweight and High-Strength Interference-Fit Composite Joint Reinforced by Thermoplastic Composite Fastener. Thin-Walled Struct. 2022, 179, 109471. [Google Scholar] [CrossRef]
- Kim, S.-Y.; He, B.; Shim, C.-S.; Kim, D. An Experimental and Numerical Study on the Interference-Fit Pin Installation Process for Cross-Ply Glass Fiber Reinforced Plastics (GFRP). Compos. Part B-Eng. 2013, 54, 153–162. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, K.; Yang, Q.; Cheng, H.; Liu, P.; Yang, Y. An Experimental Study on Mechanical Response of Single-Lap Bolted CFRP Composite Interference-Fit Joints. Compos. Struct. 2018, 196, 76–88. [Google Scholar] [CrossRef]
- Kim, S.-Y.; He, B.; Kim, D.; Shim, C.S.; Song, H.C. Bearing Strength of Interference-Fit Pin Joined Glass Fiber Reinforced Plastic Composites. J. Compos. Mater. 2020, 54, 1579–1591. [Google Scholar] [CrossRef]
- Zou, P.; Chen, X.; Chen, H.; Xu, G. Damage Propagation and Strength Prediction of a Single-Lap Interference-Fit Laminate Structure. Front. Mech. Eng. 2020, 15, 558–570. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, J.; Zou, P.; Cheng, Y.; Luo, B.; Cheng, H. Effect of Secondary Bending and Bolt Load on Damage and Strength of Composite Single-Lap Interference-Fit Bolted Structures. J. Compos. Mater. 2019, 53, 4385–4398. [Google Scholar] [CrossRef]
- Wang, C.-G.; Song, X.-Y.; Zang, J.; Zhang, Y.-W.; Zhang, Z. The Rigid-Flexible Coupling Vibration of Assembled Disk-Composite Conical Shell Structure of Electric Aircraft in Hygrothermal Circumstance. Thin-Walled Struct. 2024, 199, 111823. [Google Scholar] [CrossRef]
- Cao, Z.; Cardew-Hall, M. Interference-Fit Riveting Technique in Fiber Composite Laminates. Aerosp. Sci. Technol. 2006, 10, 327–330. [Google Scholar] [CrossRef]
- Kiral, B.G. Effect of the Clearance and Interference-Fit on Failure of the Pin-Loaded Composites. Mater. Des. 2010, 31, 85–93. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, H.; Hu, W.; Li, Y.; Zhang, K.; Cheng, Y. Investigation on Static and Fatigue Performance of CFRP/Al-Alloy Interference Bolted Joint Considering the Influence of Hole-Axis Error. Eng. Fail. Anal. 2025, 174, 109516. [Google Scholar] [CrossRef]
- Zou, P.; Li, Y.; Zhang, K.; Cheng, H.; Li, J. Influence of Interference-Fit Percentage on Stress and Damage Mechanism in Hi-Lock Pin Installation Process of CFRP. J. Compos. Mater. 2017, 51, 3525–3538. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zhang, K.; Liu, P.; Zou, P. Interface Damage Behaviour during Interference-Fit Bolt Installation Process for CFRP/Ti Alloy Joining Structure. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 1359–1371. [Google Scholar] [CrossRef]
- Raju, K.P.; Bodjona, K.; Lim, G.-H.; Lessard, L. Improving Load Sharing in Hybrid Bonded/Bolted Composite Joints Using an Interference-Fit Bolt. Compos. Struct. 2016, 149, 329–338. [Google Scholar] [CrossRef]
- Mulazimoglu, H.; Haylock, L. Recent Developments in Techniques to Minimize Lightning Current Arcing between Fasteners and Composite Structure. In Proceedings of the International Conference on Lightning and Static Electricity, Oxford, UK, 6 September 2011; Volume 20. [Google Scholar]
- Campbell, F.C., Jr. Manufacturing Processes for Advanced Composites; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Cheng, X.; Du, X.; Chen, K.; Shu, M.; Liu, X.; Chen, G. Tensile Performances of Single-Lap Countersunk Composite Joints with Metallic Bushing. Steel Compos. Struct. 2021, 40, 421–434. [Google Scholar] [CrossRef]
- Kang, Y.; Kou, S.; Wang, Z.; Meng, K.; Li, G.; Song, S.; Wang, A. Real-Time Dynamic Damage Monitoring of Ultra-Thin-Ply Composite Bonded/Bolted Joint Interference-Fit Installation Based on Evolutionary. Tribol. Int. 2024, 199, 110008. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Zhao, M.; Zhao, Y.; Chang, Z. Effects of Ply Thickness and Interference-Fit on the Bearing Strength of Single-Lap Countersunk Composite Joints. Thin-Walled Struct. 2023, 189, 110878. [Google Scholar] [CrossRef]
- Ye, Y.; Zhu, W.; Jiang, J.; Xu, Q.; Ke, Y. Computational Modelling of Postbuckling Behavior of Composite T-Stiffened Panels with Different Bonding Methods. Compos. Part B-Eng. 2019, 166, 247–256. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, Q.; Xin, S.; Chen, Y.; Wu, C.; Wang, H.; Xu, J.; Wan, M.; Zeng, W.; Zhao, Y. High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process. Mater. Sci. Eng. A 2022, 845, 143260. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. Compos. Sci. Technol. 2002, 62, 1633–1662. [Google Scholar] [CrossRef]
- Chang, F.-K.; Chang, K.-Y. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- Gomes, G.F.; Diniz, C.A.; Da Cunha, S.S.; Ancelotti, A.C. Design Optimization of Composite Prosthetic Tubes Using GA-ANN Algorithm Considering Tsai-Wu Failure Criteria. J. Fail. Anal. Preven. 2017, 17, 740–749. [Google Scholar] [CrossRef]
- Zuo, Y.; Cao, Z.; Zheng, G.; Zhang, Q. Damage Behavior Investigation of CFRP/Ti Bolted Joint during Interference Fit Bolt Dynamic Installation Progress. Eng. Fail. Anal. 2020, 111, 104454. [Google Scholar] [CrossRef]
- Nakayasu, H.; Maekawa, Z. A Comparative Study of Failure Criteria in Probabilistic Fields and Stochastic Failure Envelopes of Composite Materials. Reliab. Eng. Syst. Saf. 1997, 56, 209–220. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Hashin, Z. Fatigue Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1981, 48, 846–852. [Google Scholar] [CrossRef]
- Pei, N.; Shang, J.; Bond, L.J.; Xu, C. Investigation of the Influence of Multi-Walled Carbon Nanotubes on Laminate Composites During Progressive Tensile Damage Using Acoustic Emission. J. Nondestruct. Eval. 2022, 41, 9. [Google Scholar] [CrossRef]
- Liu, J.L.; Pham, V.N.H.; Mencattelli, L.; Chew, E.; Chua, P.Y.; Shen, J.; Tian, K.; Zhi, J.; Jiang, D.; Tay, T.E.; et al. Improving the Impact Performance of Natural Fiber Reinforced Laminate through Hybridization and Layup Design. Compos. Sci. Technol. 2024, 251, 110585. [Google Scholar] [CrossRef]
- Kelly, G. Load Transfer in Hybrid (Bonded/Bolted) Composite Single-Lap Joints. Compos. Struct. 2005, 69, 35–43. [Google Scholar] [CrossRef]
- Kelly, G. Quasi-Static Strength and Fatigue Life of Hybrid (Bonded/Bolted) Composite Single-Lap Joints. Compos. Struct. 2006, 72, 119–129. [Google Scholar] [CrossRef]
Material Parameter | Numeric Value |
---|---|
Longitudinal elastic modulus (MPa) | 145,000 |
Tensile modulus , (MPa) | 9500 |
Modulus of shear , (MPa) | 5000 |
Modulus of shear (MPa) | 3700 |
Poisson ratio , | 0.3 |
Poisson ratio | 0.21 |
Longitudinal tensile strain effect Xt | 0.0186 |
longitudinal compression loss effect Xc | 0.0114 |
Horizontal tensile strain effect Yt | 0.0058 |
Horizontal compression loss effect Yc | 0.0237 |
Shear failure strain , | 0.02 |
Shear failure strain | 0.0054 |
Density (t/mm3) |
Material Parameter | Numeric Value |
---|---|
Elastic modulus E (MPa) | 110,000 |
Poisson ratio | 0.34 |
Density (t/mm3) |
Damage Pattern | E11 | E22 | E33 | G12 | G23 | G13 |
---|---|---|---|---|---|---|
Fiber stretching | 0.01 | 1 | 1 | 0.01 | 1 | 0.01 |
Fiber compression | 0.01 | 1 | 1 | 0.01 | 1 | 0.01 |
Matrix stretching | 1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Matrix compression | 1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
In-plane shear | 1 | 1 | 1 | 0.01 | 1 | 1 |
Exterior shear | 1 | 1 | 1 | 1 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Guo, X.; Zhao, R.; Zhang, D.; Wan, M. Damage Simulation Study of Composite-to-Metal Interference-Fit with Multiple Structural Parameters. Crystals 2025, 15, 481. https://doi.org/10.3390/cryst15050481
Jiang S, Guo X, Zhao R, Zhang D, Wan M. Damage Simulation Study of Composite-to-Metal Interference-Fit with Multiple Structural Parameters. Crystals. 2025; 15(5):481. https://doi.org/10.3390/cryst15050481
Chicago/Turabian StyleJiang, Shan, Xiao Guo, Rui Zhao, Dongxu Zhang, and Min Wan. 2025. "Damage Simulation Study of Composite-to-Metal Interference-Fit with Multiple Structural Parameters" Crystals 15, no. 5: 481. https://doi.org/10.3390/cryst15050481
APA StyleJiang, S., Guo, X., Zhao, R., Zhang, D., & Wan, M. (2025). Damage Simulation Study of Composite-to-Metal Interference-Fit with Multiple Structural Parameters. Crystals, 15(5), 481. https://doi.org/10.3390/cryst15050481