Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. Model Validation
3.2. Elastic Modulus
3.3. Component Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- He, P.; Yu, H.; Li, D.; Zhou, H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 2012, 22, 3680–3695. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Xu, B.; Qian, D.; Wang, Z.; Meng, Y.S. Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R Rep. 2012, 73, 51–65. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Yu, Y. A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chin. Chem. Lett. 2024, 35, 108865. [Google Scholar] [CrossRef]
- Yao, J.; Wang, X.; Hu, P.; Fan, J.; Yang, X.; Jiang, W.; Jiang, S.; Dong, P.; Zhang, Y.; Duan, J.; et al. Local Electron Spin-State Modulation at Mn Site for Advanced Sodium-Ion Batteries with Fast-Kinetic NaNi0.33Fe0.33Mn0.33O2 Cathode. Adv. Funct. Mater. 2024, 2419967. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Y.; Fan, J.; Yao, J.; Luo, L.; Zhou, Z.; Dong, P.; Xiao, W. In situ constructed MgO parclose-concerted fabrication of Silicon/carbon hybrids via a high-efficiency and expedited electrochemical process in molten salt. Chem. Eng. J. 2024, 484, 149428. [Google Scholar] [CrossRef]
- Mizushima, K.; Jones, P.C.; Wiseman, P.J.; Goodenough, J.B. LixCoO2 (0 < x< −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789. [Google Scholar] [CrossRef]
- Kang, K.; Meng, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980. [Google Scholar] [CrossRef]
- Mo, J.Y.; Jeon, W. The Impact of Electric Vehicle Demand and Battery Recycling on Price Dynamics of Lithium-Ion Battery Cathode Materials: A Vector Error Correction Model (VECM) Analysis. Sustainability 2018, 10, 2870. [Google Scholar] [CrossRef]
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling─Overview of Techniques and Trends. ACS Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Johnson, P.J.; de Picciotto, L.A.; Bruce, P.G.; Goodenough, J.B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1984, 19, 179–187. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef]
- Zhao, E.; He, L.; Wang, B.; Li, X.; Zhang, J.; Wu, Y.; Chen, J.; Zhang, S.; Liang, T.; Chen, Y.; et al. Structural and mechanistic revelations on high capacity cation-disordered Li-rich oxides for rechargeable Li-ion batteries. Energy Storage Mater. 2019, 16, 354–363. [Google Scholar] [CrossRef]
- Stoyanova, R. Lithium/nickel mixing in the transition metal layers of lithium nickelate: High-pressure synthesis of layered Li[LixNi1−x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ion. 2003, 161, 197–204. [Google Scholar] [CrossRef]
- Capitaine, F. A new variety of LiMnO2 with a layered structure. Solid State Ion. 1996, 89, 197–202. [Google Scholar] [CrossRef]
- Min, K.; Kim, K.; Jung, C.; Seo, S.-W.; Song, Y.Y.; Lee, H.S.; Shin, J.; Cho, E. A comparative study of structural changes in lithium nickel cobalt manganese oxide as a function of Ni content during delithiation process. J. Power Sources 2016, 315, 111–119. [Google Scholar] [CrossRef]
- Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater 2009, 8, 320–324. [Google Scholar] [CrossRef]
- Guo, J.; Jiao, L.F.; Yuan, H.T.; Li, H.X.; Zhang, M.; Wang, Y.M. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method. Electrochim. Acta 2006, 51, 3731–3735. [Google Scholar] [CrossRef]
- Hwang, B.J.; Santhanam, R.; Chen, C.H. Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries. J. Power Sources 2003, 114, 244–252. [Google Scholar] [CrossRef]
- Ren, H.; Huang, Y.; Wang, Y.; Li, Z.; Cai, P.; Peng, Z.; Zhou, Y. Effects of different carbonate precipitators on LiNi1/3Co1/3Mn1/3O2 morphology and electrochemical performance. Mater. Chem. Phys. 2009, 117, 41–45. [Google Scholar] [CrossRef]
- Ahn, W.; Lim, S.N.; Jung, K.-N.; Yeon, S.-H.; Kim, K.-B.; Song, H.S.; Shin, K.-H. Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries. J. Alloys Compd. 2014, 609, 143–149. [Google Scholar] [CrossRef]
- Kosova, N.V.; Devyatkina, E.T.; Kaichev, V.V. Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry. J. Power Sources 2007, 174, 965–969. [Google Scholar] [CrossRef]
- Park, M.; Zhang, X.; Chung, M.; Less, G.B.; Sastry, A.M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929. [Google Scholar] [CrossRef]
- Li, P.; Zhao, Y.; Shen, Y.; Bo, S.-H. Fracture behavior in battery materials. J. Phys. Energy 2020, 2, 022002. [Google Scholar] [CrossRef]
- Zhu, M.; Park, J.; Sastry, A.M. Fracture Analysis of the Cathode in Li-Ion Batteries: A Simulation Study. J. Electrochem. Soc. 2012, 159, A492. [Google Scholar] [CrossRef]
- Iqbal, N.; Choi, J.; Lee, C.; Khan, A.; Tanveer, M.; Lee, S. A Review on Modeling of Chemo-mechanical Behavior of Particle–Binder Systems in Lithium-Ion Batteries. Multiscale Sci. Eng. 2022, 4, 79–93. [Google Scholar] [CrossRef]
- Iqbal, N.; Lee, S. Anisotropic model to describe chemo-mechanical response of Ni-rich cathode materials. Int. J. Mech. Sci. 2024, 269, 109034. [Google Scholar] [CrossRef]
- Iqbal, N.; Choi, J.; Shah, S.F.; Lee, C.; Lee, S. Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries. Appl. Math. Mech.-Engl. Ed. 2024, 45, 947–962. [Google Scholar] [CrossRef]
- Asheri, A.; Rezaei, S.; Glavas, V.; Xu, B.-X. Microstructure impact on chemo-mechanical fracture of polycrystalline lithium-ion battery cathode materials. Eng. Fract. Mech. 2024, 309, 110370. [Google Scholar] [CrossRef]
- Taghikhani, K.; Weddle, P.J.; Berger, J.R.; Kee, R.J. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion. J. Electrochem. Soc. 2021, 168, 080511. [Google Scholar] [CrossRef]
- Taghikhani, K.; Weddle, P.J.; Hoffman, R.M.; Berger, J.R.; Kee, R.J. Electro-chemo-mechanical finite-element model of single-crystal and polycrystalline NMC cathode particles embedded in an argyrodite solid electrolyte. Electrochim. Acta 2023, 460, 142585. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, K.; Liu, Y.; Stein, P.; Xu, B.-X. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion battery materials. Scr. Mater. 2020, 183, 45–49. [Google Scholar] [CrossRef]
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Wu, L.; Lee, W.H.; Zhang, J. First Principles Study on the Electrochemical, Thermal and Mechanical Properties of LiCoO2 for Thin Film Rechargeable Battery. Mater. Today Proc. 2014, 1, 82–93. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J. Ab initio study of anisotropic mechanical properties of LiCoO 2 during lithium intercalation and deintercalation process. J. Appl. Phys. 2015, 118, 225101. [Google Scholar] [CrossRef]
- Howey, D.A.; Roberts, S.A.; Viswanathan, V.; Mistry, A.; Beuse, M.; Khoo, E.; DeCaluwe, S.C.; Sulzer, V. Free Radicals: Making a Case for Battery Modeling. Electrochem. Soc. Interface 2020, 29, 30–34. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Sastry, A.M.; Lu, W. Molecular Dynamics Simulations of SOC-Dependent Elasticity of LixMn2O4 Spinels in Li-Ion Batteries. J. Electrochem. Soc. 2013, 160, 5. [Google Scholar] [CrossRef]
- Tyagi, R.; Srinivasan, S. Molecular dynamics modeling of lithium ion intercalation induced change in the mechanical properties of LixMn2O4. J. Chem. Phys. 2020, 153, 164712. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, K.-R.; Lee, B.-J. Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1– xMn2O4. J. Phys. Chem. C 2017, 121, 13008–13017. [Google Scholar] [CrossRef]
- Lee, E.; Lee, K.-R.; Lee, B.-J. An interatomic potential for the Li-Co-O ternary system. Comput. Mater. Sci. 2018, 142, 47–58. [Google Scholar] [CrossRef]
- Asadi, A.; Aghamiri, S.F.; Talaie, M.R. Molecular dynamics simulation of a LixMn2O4 spinel cathode material in Li-ion batteries. RSC Adv. 2016, 6, 115354–115363. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.S. Atomistic Simulation Study of Mixed-Metal Oxide (LiNi1/3Co1/3Mn1/3O2) Cathode Material for Lithium Ion Battery. J. Phys. Chem. C 2012, 116, 6484–6489. [Google Scholar] [CrossRef]
- He, X.; Ding, X.; Xu, R. Anisotropic mechanical properties of LiNixMnyCo1-x-yO2 cathodes for Li-ion batteries: A first-principles theoretical study. Acta Mater. 2024, 267, 119751. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Wang, Z.; Wang, Y.; Chen, T.; Zheng, J. Elastic Mechanics Study of Layered Li (NixMnyCoz)O2. PRX Energy 2024, 3, 013012. [Google Scholar] [CrossRef]
- Cheng, E.J.; Hong, K.; Taylor, N.J.; Choe, H.; Wolfenstine, J.; Sakamoto, J. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC). J. Eur. Ceram. Soc. 2017, 37, 3213–3217. [Google Scholar] [CrossRef]
- Xu, R.; Sun, H.; de Vasconcelos, L.S.; Zhao, K. Mechanical and Structural Degradation of LiNixMnyCozO2 Cathode in Li-Ion Batteries: An Experimental Study. J. Electrochem. Soc. 2017, 164, A3333. [Google Scholar] [CrossRef]
- Sharma, N.; Meng, D.; Wu, X.; De Vasconcelos, L.S.; Li, L.; Zhao, K. Nanoindentation measurements of anisotropic mechanical properties of single crystalline NMC cathodes for Li-ion batteries. Extrem. Mech. Lett. 2023, 58, 101920. [Google Scholar] [CrossRef]
- Pedone, A.; Malavasi, G.; Menziani, M.C.; Cormack, A.N.; Segre, U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J Phys Chem B 2006, 110, 11780–11795. [Google Scholar] [CrossRef]
- Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Y.; Du, R.; Tang, M.; Wang, B.; Zhang, J. Effect of Ni2+ on Lithium-Ion Diffusion in Layered LiNi1−x−yMnxCoyO2 Materials. Crystals 2021, 11, 465. [Google Scholar] [CrossRef]
- Akimoto, J.; Gotoh, Y.; Oosawa, Y. Synthesis and Structure Refinement of LiCoO2Single Crystals. J. Solid State Chem. 1998, 141, 298–302. [Google Scholar] [CrossRef]
- Wang, C.; Ma, X.; Zhou, L.; Cheng, J.; Sun, J.; Zhou, Y. Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery. Electrochim. Acta 2007, 52, 3022–3027. [Google Scholar] [CrossRef]
- Cauranta, D.; Baffie, N.; Garcia, B.; Pereira-Ramosb, J.P. Synthesis by a soft chemistry route and characterization of LiNixCo1−xO2 (0 ≤ x ≤ 1) cathode materials. Solid State Ionics. 1996, 91, 45–54. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Morgan, L.M.; Islam, M.M.; Yang, H.; O’Regan, K.; Patel, A.N.; Ghosh, A.; Kendrick, E.; Marinescu, M.; Offer, G.J.; Morgan, B.J.; et al. From Atoms to Cells: Multiscale Modeling of LiNixMnyCozO2 Cathodes for Li-Ion Batteries. ACS Energy Lett. 2022, 7, 108–122. [Google Scholar] [CrossRef]
- Belharouak, I.; Sun, Y.-K.; Liu, J.; Amine, K. Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J. Power Sources 2003, 123, 247–252. [Google Scholar] [CrossRef]
- Bie, X.; Du, F.; Wang, Y.; Zhu, K.; Ehrenberg, H.; Nikolowski, K.; Wang, C.; Chen, G.; Wei, Y. Relationships between the crystal/interfacial properties and electrochemical performance of LiNi0.33Co0.33Mn0.33O2 in the voltage window of 2.5–4.6V. Electrochim. Acta 2013, 97, 357–363. [Google Scholar] [CrossRef]
- Ishidzu, K.; Oka, Y.; Nakamura, T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2. Solid State Ion. 2016, 288, 176–179. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, K. Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials. J. Phys. Chem. C 2017, 121, 6002–6010. [Google Scholar] [CrossRef]
- Sun, H.-H.; Manthiram, A. Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries. Chem. Mater. 2017, 29, 8486–8493. [Google Scholar] [CrossRef]
- Dahbi, M.; Saadoune, I.; Amarilla, J.M. LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations. Electrochim. Acta 2008, 53, 5266–5271. [Google Scholar] [CrossRef]
- Kondrakov, A.O.; Schmidt, A.; Xu, J.; Geßwein, H.; Mönig, R.; Hartmann, P.; Sommer, H.; Brezesinski, T.; Janek, J. Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. J. Phys. Chem. C 2017, 121, 3286–3294. [Google Scholar] [CrossRef]
Interaction Pair | D0 (eV) | r0 (Å) | α (Å−1) |
---|---|---|---|
Li+ − O2− | 0.001114 | 2.681360 | 3.429506 |
Ni2+ − O2− | 0.029356 | 2.500754 | 2.679137 |
Ni3+ − O2− | 0.029356 | 2.500754 | 2.679137 |
Mn4+ − O2− | 0.029658 | 2.440000 | 3.012000 |
Co3+ − O2− | 0.010958 | 2.400628 | 3.461272 |
O2− − O2− | 0.042395 | 3.358701 | 1.659316 |
NMC | Ni2+ | Ni3+ | Mn4+ | Co3+ |
---|---|---|---|---|
111 | 0.33 | 0 | 0.33 | 0.33 |
532 | 0.3 | 0.2 | 0.3 | 0.2 |
622 | 0.2 | 0.4 | 0.2 | 0.2 |
721 | 0.2 | 0.5 | 0.2 | 0.1 |
811 | 0.1 | 0.7 | 0.1 | 0.1 |
NMC | Charge Weight | C11 (GPa) | |
---|---|---|---|
Simulation Result | Reference Result [Ref.] | ||
111 | 50% | 142.0 | 199 [50] |
60% | 195.7 | ||
80% | 326.5 | ||
100% | 490.4 |
Ions | Partial Charges (qi) |
---|---|
Li+ | +0.6 |
Ni2+ | +1.2 |
Ni3+ | +1.8 |
Mn4+ | +2.4 |
Co3+ | +1.8 |
O2− | −1.2 |
NMC | Simulation Result (Å) | Reference Result (Å) | |||
---|---|---|---|---|---|
x-Axis | z-Axis | x-Axis | [Ref.] | z-Axis | |
111 | 2.955 | 14.703 | 2.862 | [61] | 14.238 |
2.865 | [62] | 14.249 | |||
2.865 | [63] | 14.25 | |||
2.868 | [47] | 14.213 | |||
2.8125 | [64] | 14.42 | |||
532 | 2.951 | 14.685 | 2.925 | [64] | 14.42 |
622 | 2.936 | 14.610 | 2.8683 | [65] | 14.2241 |
2.91 | [64] | 14.39 | |||
721 | 2.942 | 14.638 | 2.8565 | [66] | 14.1576 |
811 | 2.932 | 14.590 | 2.83 | [67] | 14.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, I.U.; Lee, S. Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials. Crystals 2025, 15, 272. https://doi.org/10.3390/cryst15030272
Haq IU, Lee S. Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials. Crystals. 2025; 15(3):272. https://doi.org/10.3390/cryst15030272
Chicago/Turabian StyleHaq, Ijaz Ul, and Seungjun Lee. 2025. "Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials" Crystals 15, no. 3: 272. https://doi.org/10.3390/cryst15030272
APA StyleHaq, I. U., & Lee, S. (2025). Molecular Dynamics Study of the Ni Content-Dependent Mechanical Properties of NMC Cathode Materials. Crystals, 15(3), 272. https://doi.org/10.3390/cryst15030272