Interference of Sulphonate Buffering Agents with E. coli Hypoxanthine-Guanine Phosphoribosyltransferase Active Site Functioning: A Crystallographic and Enzymological Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Enzyme Production, Isolation and Purification
2.2. Enzyme Assay
2.3. Crystallization
2.4. X-Ray Data Processing and Structure Analysis
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CV | Coloumn volume |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
HGPRT | hypoxanthine-guanine phosphorybosyltransferase |
MES | 2-(N-morpholino)ethanesulfonic acid |
PIPES | Piperazine-N,N′-bis(2-ethanesulfonic acid) |
PRPP | Phosphoribosylpyrophosphate |
PRT-like | Phosphoribosyltrapsferase-like |
9dG | 9-deazaguanine |
References
- Schramm, V.L.; Grubmeyer, C. Phosphoribosyltransferase mechanisms and roles in nucleic acid metabolism. Prog. Nucleic Acid. Res. Mol. Biol. 2004, 78, 261–304. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis. 2007, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Eads, J.; Sacchettini, J.C.; Grubmeyer, C. Kinetic mechanism of human hypoxanthine-guanine phosphoribosyltransferase: Rapid phosphoribosyl transfer chemistry. Biochemistry 1997, 36, 3700–3712. [Google Scholar] [CrossRef] [PubMed]
- Takemura, H.; Choi, J.H.; Fushimi, K.; Narikawa, R.; Wu, J.; Kondo, M.; Nelson, D.C.; Suzuki, T.; Ouchi, H.; Inai, M.; et al. Role of hypoxanthine-guanine phosphoribosyltransferase in the metabolism of fairy chemicals in rice. Org. Biomol. Chem. 2023, 21, 2556–2561. [Google Scholar] [CrossRef]
- Zhang, L.; Kiruba, G.S.M.; Lee, J.K. Gas-Phase Studies of Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferase (HG(X)PRT) Substrates. J. Org. Chem. 2023, 88, 6816–6826. [Google Scholar] [CrossRef]
- Lin, C.; Liu, Y.; Wan, W.; Gao, J.; Sun, L. Deciphering the bidirectional catalytic mechanism of HGPRT from Mycobacterium tuberculosis: Functional mapping of key active-site residues. Int. J. Biol. Macromol. 2025, 320, 146122. [Google Scholar] [CrossRef]
- Gardiner, D.L.; Skinner-Adams, T.S.; Brown, C.L.; Andrews, K.T.; Stack, C.M.; McCarthy, J.S.; Dalton, J.P.; Trenholme, K.R. Plasmodium falciparum: New molecular targets with potential for antimalarial drug development. Expert. Rev. Anti Infect. Ther. 2009, 7, 1087–1098. [Google Scholar] [CrossRef]
- Keough, D.T.; Hocková, D.; Krecmerová, M.; Cesnek, M.; Holý, A.; Naesens, L.; Brereton, I.M.; Winzor, D.J.; de Jersey, J.; Guddat, L.W. Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: A target for anti-malarial chemotherapy. Mol. Biochem. Parasitol. 2010, 173, 165–169. [Google Scholar] [CrossRef]
- Keough, D.T.; Rejman, D.; Pohl, R.; Zborníková, E.; Hocková, D.; Croll, T.; Edstein, M.D.; Birrell, G.W.; Chavchich, M.; Naesens, L.M.J.; et al. Design of Plasmodium vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chem. Biol. 2018, 13, 82–90. [Google Scholar] [CrossRef]
- Keough, D.T.; Hocková, D.; Holý, A.; Naesens, L.M.; Skinner-Adams, T.S.; Jersey, J.; Guddat, L.W. Inhibition of hypoxanthine-guanine phosphoribosyltransferase by acyclic nucleoside phosphonates: A new class of antimalarial therapeutics. J. Med. Chem. 2009, 52, 4391–4399. [Google Scholar] [CrossRef]
- Aronov, A.M.; Munagala, N.R.; Ortiz De Montellano, P.R.; Kuntz, I.D.; Wang, C.C. Rational design of selective submicromolar inhibitors of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase. Biochemistry 2000, 39, 4684–4691. [Google Scholar] [CrossRef]
- Naguib, F.N.; Iltzsch, M.H.; el Kouni, M.M.; Panzica, R.P.; el Kouni, M.H. Structure-activity relationships for the binding of ligands to xanthine or guanine phosphoribosyl-transferase from Toxoplasma gondii. Biochem. Pharmacol. 1995, 50, 1685–1693. [Google Scholar] [CrossRef] [PubMed]
- Terán, D.; Hocková, D.; Česnek, M.; Zíková, A.; Naesens, L.; Keough, D.T.; Guddat, L.W. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase. Sci. Rep. 2016, 6, 35894. [Google Scholar] [CrossRef] [PubMed]
- Glockzin, K.; Kostomiris, D.; Minnow, Y.V.T.; Suthagar, K.; Clinch, K.; Gai, S.; Buckler, J.N.; Schramm, V.L.; Tyler, P.C.; Meek, T.D.; et al. Kinetic Characterization and Inhibition of Trypanosoma cruzi Hypoxanthine-Guanine Phosphoribosyltransferases. Biochemistry 2022, 61, 2088–2105. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, J.; Keough, D.T.; Xia, H.; Slavětínská, L.P.; Dračínský, M.; Česnek, M.; Travis, J.; Chavchich, M.; Edstein, M.; Hocková, D.; et al. C1′-Branched Acyclic Nucleoside Phosphonates as Inhibitors of Plasmodium Falciparum 6-Oxopurine Phosphoribosyltransferase. ChemMedChem 2025, 20, e202500575. [Google Scholar] [CrossRef]
- Hammal, L.; Javaid, S.; Wahab, A.T.; Zafar, H.; Rahman, N.; Ahmed, A.; Choudhary, M.I. Identification of new inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine Phosphoribosyltransferase (HG(X)PRT): An outlook towards the treatment of malaria. Int. J. Biol. Macromol. 2025, 286, 137917. [Google Scholar] [CrossRef]
- Masia, K.J.; Mhlongo, N.N.; Pooe, O.J.; Ibrahim, M.A.; Kappo, A.P.; Simelane, M.B.C. Antiplasmodial potential of compounds isolated from Ziziphus mucronata and their binding to Plasmodium falciparum HGXPRT using biophysical and molecular docking studies. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 5453–5463. [Google Scholar] [CrossRef]
- Keough, D.T.; Petrová, M.; King, G.; Kratochvíl, M.; Pohl, R.; Doleželová, E.; Zíková, A.; Guddat, L.W.; Rejman, D. Development of Prolinol Containing Inhibitors of Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferase: Rational Structure-Based Drug Design. J. Med. Chem. 2024, 67, 7158–7175. [Google Scholar] [CrossRef]
- Glockzin, K.; Meneely, K.M.; Hughes, R.; Maatouk, S.W.; Piña, G.E.; Suthagar, K.; Clinch, K.; Buckler, J.N.; Lamb, A.L.; Tyler, P.C.; et al. Kinetic and Structural Characterization of Trypanosoma cruzi Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferases and Repurposing of Transition-State Analogue Inhibitors. Biochemistry 2023, 62, 2182–2201. [Google Scholar] [CrossRef]
- Gai, S.; Suthagar, K.; Shaffer, K.J.; Jiao, W.; Minnow, Y.V.T.; Glockzin, K.; Maatouk, S.W.; Katzfuss, A.; Meek, T.D.; Schramm, V.L.; et al. The design of protozoan phosphoribosyltransferase inhibitors containing non-charged phosphate mimic residues. Bioorg Med. Chem. 2022, 74, 117038. [Google Scholar] [CrossRef]
- Martinez-Peinado, N.; Lorente-Macías, Á.; García-Salguero, A.; Cortes-Serra, N.; Fenollar-Collado, Á.; Ros-Lucas, A.; Gascon, J.; Pinazo, M.J.; Molina, I.J.; Unciti-Broceta, A.; et al. Novel Purine Chemotypes with Activity against Plasmodium falciparum and Trypanosoma cruzi. Pharmaceuticals 2021, 14, 638. [Google Scholar] [CrossRef] [PubMed]
- Vidhya, V.M.; Ponnuraj, K. Structure-based virtual screening and computational study towards identification of novel inhibitors of hypoxanthine-guanine phosphoribosyltransferase of Trypanosoma cruzi. J. Cell Biochem. 2021, 122, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Klejch, T.; Keough, D.T.; Chavchich, M.; Travis, J.; Skácel, J.; Pohl, R.; Janeba, Z.; Edstein, M.D.; Avery, V.M.; Guddat, L.W.; et al. Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation. Eur. J. Med. Chem. 2019, 183, 111667. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, J.; Keough, D.T.; Chavchich, M.; Travis, J.; Dračínský, M.; Edstein, M.D.; Guddat, L.W.; Hocková, D.; Janeba, Z. Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity. Eur. J. Med. Chem. 2021, 219, 113416. [Google Scholar] [CrossRef]
- Valsecchi, W.M.; Delfino, J.M.; Santos, J.; Fernández Villamil, S.H. Zoledronate repositioning as a potential trypanocidal drug. Trypanosoma cruzi HPRT an alternative target to be considered. Biochem. Pharmacol. 2021, 188, 114524. [Google Scholar] [CrossRef]
- Naesens, L.; Guddat, L.W.; Keough, D.T.; van Kuilenburg, A.B.; Meijer, J.; Vande Voorde, J.; Balzarini, J. Role of human hypoxanthine guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir). Mol. Pharmacol. 2013, 84, 615–629. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 2002, 46, 977–981. [Google Scholar] [CrossRef]
- Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antivir. Res. 2009, 82, 95–102. [Google Scholar] [CrossRef]
- Hucke, F.I.L.; Bestehorn-Willmann, M.; Bassetto, M.; Brancale, A.; Zanetta, P.; Bugert, J.J. CHIKV strains Brazil (wt) and Ross (lab-adapted) differ with regard to cell host range and antiviral sensitivity and show CPE in human glioblastoma cell lines U138 and U251. Virus Genes 2022, 58, 188–202. [Google Scholar] [CrossRef]
- Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 449–463. [Google Scholar] [CrossRef]
- De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [PubMed]
- Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir. Res. 2018, 153, 85–94. [Google Scholar] [CrossRef] [PubMed]
- De Vleeschauwer, A.R.; Lefebvre, D.J.; Willems, T.; Paul, G.; Billiet, A.; Murao, L.E.; Neyts, J.; Goris, N.; De Clercq, K. A Refined Guinea Pig Model of Foot-and-Mouth Disease Virus Infection for Assessing the Efficacy of Antiviral Compounds. Transbound. Emerg. Dis. 2016, 63, e205–e212. [Google Scholar] [CrossRef] [PubMed]
- Negru, P.A.; Radu, A.F.; Vesa, C.M.; Behl, T.; Abdel-Daim, M.M.; Nechifor, A.C.; Endres, L.; Stoicescu, M.; Pasca, B.; Tit, D.M.; et al. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed. Pharmacother. 2022, 147, 112700. [Google Scholar] [CrossRef]
- Hung, D.T.; Ghula, S.; Aziz, J.M.A.; Makram, A.M.; Tawfik, G.M.; Abozaid, A.A.; Pancharatnam, R.A.; Ibrahim, A.M.; Shabouk, M.B.; Turnage, M.; et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and metaanalysis of published clinical trials and observational studies. Int. J. Infect. Dis. 2022, 120, 217–227. [Google Scholar] [CrossRef]
- García-Lledó, A.; Gómez-Pavón, J.; González Del Castillo, J.; Hernández-Sampelayo, T.; Martín-Delgado, M.C.; Martín Sánchez, F.J.; Martínez-Sellés, M.; Molero García, J.M.; Moreno Guillén, S.; Rodríguez-Artalejo, F.J.; et al. Pharmacological treatment of COVID-19: An opinion paper. Rev. Esp. Quim. 2022, 35, 115–130. [Google Scholar] [CrossRef]
- Logiudice, J.; Tiecco, G.; Pavesi, A.; Bertoni, F.; Gerami, R.; Zanella, I.; Artese, A.; SPARROW group; Quiros-Roldan, E. Novel and repurposed antiviral molecules for arbovirus infections with epidemic potential: A systematic review. New Microbes New Infect. 2025, 66, 101614. [Google Scholar] [CrossRef]
- Vatsha, P.; Vardhan, G.; Kumari, T.; Kanwar, N.; Kanwal, A.; Deshmukh, R. Efficacy and safety of remdesivir and favipiravir in COVID-19 patients—A systematic review and meta-analysis. J. Family Med. Prim. Care 2025, 14, 1604–1616. [Google Scholar] [CrossRef]
- Fzal, O.; Altharawi, A.; Alamri, M.A. Identification of potential inhibitors of hypoxanthine-guanine phosphoribosyl transferase for cancer treatment by molecular docking, dynamics simulation and in vitro studies. SAR QSAR Environ. Res. 2025, 36, 169–188. [Google Scholar] [CrossRef]
- Liu, J.; Hong, S.; Yang, J.; Zhang, X.; Wang, Y.; Wang, H.; Peng, J.; Hong, L. Targeting purine metabolism in ovarian cancer. J. Ovarian Res. 2022, 15, 93. [Google Scholar] [CrossRef]
- Alabbas, A.B. Targeting XGHPRT enzyme to manage Helicobacter pylori induced gastric cancer: A multi-pronged machine learning, artificial intelligence and biophysics-based study. Saudi J. Biol. Sci. 2024, 31, 103960. [Google Scholar] [CrossRef] [PubMed]
- Esipov, R.S.; Abramchik, Y.A.; Fateev, I.V.; Konstantinova, I.D.; Kostromina, M.A.; Muravyova, T.I.; Artemova, K.G.; Miroshnikov, A.I. A Cascade of Thermophilic Enzymes As an Approach to the Synthesis of Modified Nucleotides. Acta Naturae 2016, 8, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Fateev, I.V.; Sinitsina, E.V.; Bikanasova, A.U.; Kostromina, M.A.; Tuzova, E.S.; Esipova, L.V.; Muravyova, T.I.; Kayushin, A.L.; Konstantinova, I.D.; Esipov, R.S. Thermophilic phosphoribosyltransferases Thermus thermophilus HB27 in nucleotide synthesis. Beilstein J. Org. Chem. 2018, 14, 3098–3105. [Google Scholar] [CrossRef] [PubMed]
- Cruz, G.; Saiz, L.P.; Bilal, M.; Eltoukhy, L.; Loderer, C.; Fernández-Lucas, J. Magnetic Multi-Enzymatic System for Cladribine Manufacturing. Int. J. Mol. Sci. 2022, 23, 13634. [Google Scholar] [CrossRef]
- Zayats, E.A.; Fateev, I.V.; Abramchik, Y.A.; Kostromina, M.A.; Timofeev, V.I.; Yurovskaya, D.O.; Karanov, A.A.; Konstantinova, I.D.; Golovin, A.V.; Esipov, R.S. Designing an Efficient Biocatalyst for the Phosphoribosylation of Antiviral Pyrazine-2-carboxamide Derivatives. ACS Catal. 2024, 14, 3687–3699. [Google Scholar] [CrossRef]
- Sinha, S.C.; Krahn, J.; Shin, B.S.; Tomchick, D.R.; Zalkin, H.; Smith, J.L. The purine repressor of Bacillus subtilis: A novel combination of domains adapted for transcription regulation. J. Bacteriol. 2003, 185, 4087–4098. [Google Scholar] [CrossRef]
- Focia, P.J.; Craig, S.P.; Nieves-Alicea, R.; Fletterick, R.J.; Eakin, A.E. A 1.4 A crystal structure for the hypoxanthine phosphoribosyltransferase of Trypanosoma cruzi. Biochemistry 1998, 37, 15066–15075. [Google Scholar] [CrossRef]
- Kim, J.H.; Krahn, J.M.; Tomchick, D.R.; Smith, J.L.; Zalkin, H. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J. Biol. Chem. 1996, 271, 15549–15557. [Google Scholar] [CrossRef]
- Muchmore, C.R.; Krahn, J.M.; Kim, J.H.; Zalkin, H.; Smith, J.L. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Protein Sci. 1998, 7, 39–51. [Google Scholar] [CrossRef]
- Acosta, J.; Del Arco, J.; Del Pozo, M.L.; Herrera-Tapias, B.; Clemente-Suárez, V.J.; Berenguer, J.; Hidalgo, A.; Fernández-Lucas, J. Hypoxanthine-Guanine Phosphoribosyltransferase/adenylate Kinase From Zobellia galactanivorans: A Bifunctional Catalyst for the Synthesis of Nucleoside-5′-Mono-, Di- and Triphosphates. Front. Bioeng. Biotechnol. 2020, 8, 677. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.C. The power issue: Determination of KB or Ki from IC50. A closer look at the Cheng-Prusoff equation, the Schild plot and related power equations. J. Pharmacol. Toxicol. Methods 2001, 46, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Guddat, L.W.; Vos, S.; Martin, J.L.; Keough, D.T.; de Jersey, J. Crystal structures of free, IMP-, and GMP-bound Escherichia coli hypoxanthine phosphoribosyltransferase. Protein Sci. 2002, 11, 1626–1638. [Google Scholar] [CrossRef]
- Takahashi, S.; Tsurumura, T.; Aritake, K.; Furubayashi, N.; Sato, M.; Yamanaka, M.; Hirota, E.; Sano, S.; Kobayashi, T.; Tanaka, T.; et al. High-quality crystals of human haematopoietic prostaglandin D synthase with novel inhibitors. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 846–850. [Google Scholar] [CrossRef]
- Battye, T.G.; Kontogiannis, L.; Johnson, O.; Powell, H.R.; Leslie, A.G. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 271–281. [Google Scholar] [CrossRef]
- Evans, P.R. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 282–292. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Vagin, A.A.; Steiner, R.A.; Lebedev, A.A.; Potterton, L.; McNicholas, S.; Long, F.; Murshudov, G.N. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2184–2195. [Google Scholar] [CrossRef]
- Braberg, H.; Webb, B.M.; Tjioe, E.; Pieper, U.; Sali, A.; Madhusudhan, M.S. SALIGN: A web server for alignment of multiple protein sequences and structures. Bioinformatics 2012, 28, 2072–2073. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef]
- Héroux, A.; White, E.L.; Ross, L.J.; Kuzin, A.P.; Borhani, D.W. Substrate deformation in a hypoxanthine-guanine phosphoribosyltransferase ternary complex: The structural basis for catalysis. Structure 2000, 8, 1309–1318. [Google Scholar] [CrossRef]
- Eng, W.S.; Hocková, D.; Špaček, P.; Baszczyňski, O.; Janeba, Z.; Naesens, L.; Keough, D.T.; Guddat, L.W. Crystal Structures of Acyclic Nucleoside Phosphonates in Complex with Escherichia coli Hypoxanthine Phosphoribosyltransferase. ChemistrySelect 2016, 1, 6267–6276. [Google Scholar] [CrossRef]
- Kukimoto-Niino, M.; Shibata, R.; Murayama, K.; Hamana, H.; Nishimoto, M.; Bessho, Y.; Terada, T.; Shirouzu, M.; Kuramitsu, S.; Yokoyama, S. Crystal structure of a predicted phosphoribosyltransferase (TT1426) from Thermus thermophilus HB8 at 2.01 A resolution. Protein Sci. 2005, 14, 823–827. [Google Scholar] [CrossRef]
- Balendiran, G.K.; Molina, J.A.; Xu, Y.; Torres-Martinez, J.; Stevens, R.; Focia, P.J.; Eakin, A.E.; Sacchettini, J.C.; Craig, S.P. Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci. 1999, 8, 1023–1031. [Google Scholar] [CrossRef]
- Héroux, A.; White, E.L.; Ross, L.J.; Davis, R.L.; Borhani, D.W. Crystal structure of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase with XMP, pyrophosphate, and two Mg(2+) ions bound: Insights into the catalytic mechanism. Biochemistry 1999, 38, 14495–14506. [Google Scholar] [CrossRef]
- Canyuk, B.; Focia, P.J.; Eakin, A.E. The role for an invariant aspartic acid in hypoxanthine phosphoribosyltransferases is examined using saturation mutagenesis, functional analysis, and X-ray crystallography. Biochemistry 2001, 40, 2754–2765. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Diffraction Source | ELETTRA BEAMLINE XRD2 |
Wavelength (Å) | 0.9999 |
Temperature (K) | 100 |
Detector | DECTRIS EIGER R 1M |
Crystal to detector distance (mm) | 300 |
Total rotation range (°) | 360 |
Rotation angle per image (°) | 0.1 |
Exposure time per image (s) | 0.1 |
Space group | P3121 |
a, b, c (Å) | 85.22, 85.22, 168.28 |
α β, γ (°) | 90, 90, 120 |
Mosaicity (°) | 2.7 |
Resolution range (Å) | 2.08–29.94 (2.08–2.14) |
Total no. of reflections | 167,079 (10,069) |
No. of unique reflections | 40,751 (2877) |
Completeness (%) | 99.67 (96.5) |
Redundancy | 4.1 (3.5) |
<I/σ(I)> from merged data | 8 (1.9) |
Rmeas | 0.13 (0.43) |
Parameter | Value |
---|---|
PDB ID | 9K8M |
Resolution range (Å) | 29.94–2.08 (2.14–2.08) |
Completeness (%) | 99.7 (96.5) |
No. of reflections, working set | 38,642 (2877) |
No. of reflections, test set | 2109 (151) |
Final Rcryst | 0.205 (0.289) |
Final Rfree | 0.227 (0.321) |
No. of non-H atoms | 2720 |
Protein | 2651 |
Ions | 0 |
Ligands | 30 |
Waters | 39 |
R.m.s. deviations from ideality | |
Bonds (Å) | 0.013 |
Angles (°) | 1.908 |
Average B factors for all atoms (Å2) | 46.99 |
for protein atoms | 49.99 |
for ligands atoms | 67.09 |
for waters | 44.38 |
Ramachandran plot | |
Favoured regions (%) | 96 |
Molecule | IC50, mM | Hill Coefficient | Ki, mM |
---|---|---|---|
HEPES | 187 ± 9 | 1.52 ± 0.13 | 66.4 ± 3.2 |
MES | 171 ± 3 | 1.78 ± 0.05 | 67.9 ± 1.2 |
PIPES | 77.1 ± 7.0 | 1.30 ± 0.14 | 24.7 ± 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayats, E.A.; Abramchik, Y.A.; Kostromina, M.A.; Timofeev, V.I.; Shevtsov, M.B.; Mishin, A.V.; Fateev, I.V.; Karanov, A.A.; Sharafutdinova, A.R.; Arnautova, A.O.; et al. Interference of Sulphonate Buffering Agents with E. coli Hypoxanthine-Guanine Phosphoribosyltransferase Active Site Functioning: A Crystallographic and Enzymological Study. Crystals 2025, 15, 874. https://doi.org/10.3390/cryst15100874
Zayats EA, Abramchik YA, Kostromina MA, Timofeev VI, Shevtsov MB, Mishin AV, Fateev IV, Karanov AA, Sharafutdinova AR, Arnautova AO, et al. Interference of Sulphonate Buffering Agents with E. coli Hypoxanthine-Guanine Phosphoribosyltransferase Active Site Functioning: A Crystallographic and Enzymological Study. Crystals. 2025; 15(10):874. https://doi.org/10.3390/cryst15100874
Chicago/Turabian StyleZayats, Evgeniy A., Yulia A. Abramchik, Maria A. Kostromina, Vladimir I. Timofeev, Mikhail B. Shevtsov, Alexey V. Mishin, Ilya V. Fateev, Andrey A. Karanov, Alexandra R. Sharafutdinova, Aleksandra O. Arnautova, and et al. 2025. "Interference of Sulphonate Buffering Agents with E. coli Hypoxanthine-Guanine Phosphoribosyltransferase Active Site Functioning: A Crystallographic and Enzymological Study" Crystals 15, no. 10: 874. https://doi.org/10.3390/cryst15100874
APA StyleZayats, E. A., Abramchik, Y. A., Kostromina, M. A., Timofeev, V. I., Shevtsov, M. B., Mishin, A. V., Fateev, I. V., Karanov, A. A., Sharafutdinova, A. R., Arnautova, A. O., Konstantinova, I. D., Borshchevskiy, V. I., & Esipov, R. S. (2025). Interference of Sulphonate Buffering Agents with E. coli Hypoxanthine-Guanine Phosphoribosyltransferase Active Site Functioning: A Crystallographic and Enzymological Study. Crystals, 15(10), 874. https://doi.org/10.3390/cryst15100874