A Portable Miniature Cryogenic Environment for In Situ Neutron Diffraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Material Selection
2.2. Experimental Setups
3. Results and Discussion
3.1. Temperature Profiles
3.2. Cryogenic In Situ Neutron Diffraction of LiMn2O4
3.3. High-Throughput Measurements across Multiple Samples
3.3.1. Feasibility
3.3.2. Anisotropic Thermal Expansion in Rhombohedral Perovskites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Börner, H.; Brown, J.; Carlile, C.J.; Cubitt, R.; Currat, R.; Dianoux, A.J.; Farago, B.; Hewat, A.W.; Kulda, J.; Lelièvre-Berna, E.; et al. Neutron Data Booklet, 2nd ed.; Dianoux, A., Lander, G., Eds.; OCP Science: Philadelphia, PA, USA, 2003. [Google Scholar]
- Ishikado, M.; Takahashi, R.; Yamauchi, Y.; Nakamura, M.; Ishimaru, S.; Yamauchi, S.; Ohira-Kawamura, S.; Kira, H.; Sakaguchi, Y.; Watanabe, M.; et al. Recent Status of the Cryogenic Sample Environment at the MLF, J-PARC. JPS Conf. Proc. 2024, 41, 011010. [Google Scholar] [CrossRef]
- Koehler, W.C.; Wollan, E.O. Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J. Phys. Chem. Solids 1957, 2, 100–106. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Hood, Z.D.; Keum, J.K.; Pandian, A.S.; Chi, M.; An, K.; Liang, C.; Sunkara, M.K. Revealing the Structural Stability and Na-Ion Mobility of 3D Superionic Conductor Na3SbS4 at Extremely Low Temperatures. ACS Appl. Energy Mater. 2018, 1, 7028–7034. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Zhao, H.; Sun, G.; Yao, X. Development of a variable temperature mechanical loading device for in situ neutron scattering measurements. J. Mech. Sci. Technol. 2022, 36, 3939–3947. [Google Scholar] [CrossRef]
- Hu, H.; Dou, M.; Zhang, C.; Cheng, H.; He, C.; Ke, Y.; Yuan, B.; Bai, B.; Sun, Y.; Huang, Z.; et al. Development of an automatic sample changer with variable temperature for small-angle neutron scattering at China Spallation Neutron Source. Rev. Sci. Instrum. 2023, 94, 074903. [Google Scholar] [CrossRef]
- Thackeray, M.M.; Lee, E.; Shi, B.; Croy, J.R. Review—From LiMn2O4 to Partially-Disordered Li2MnNiO4: The Evolution of Lithiated-Spinel Cathodes for Li-Ion Batteries. J. Electrochem. Soc. 2022, 169, 020535. [Google Scholar] [CrossRef]
- Lin, Q.; Bian, L.; Liu, C.; Ting, T.; Liu, Z.; Wei, P.; Han, S.; Xu, Y.; Peng, J.; An, S. Improved La0.8Sr0.2MnO3-δ oxygen electrode activity by introducing high oxygen ion conductor oxide for solid oxide steam electrolysis. Int. J. Hydrogen Energy 2024, 49, 616–624. [Google Scholar] [CrossRef]
- Rendón, R.C.; Udayabhaskar, R.; Salvo, C.; Sepúlveda, E.; Rodríguez, J.J.; Camurri, C.P.; Viswanathan, M.R. Evaluation of La0.8Sr0.2MnO3 perovskite prepared by fast solution combustion. Ceram. Int. 2022, 48, 35100–35107. [Google Scholar] [CrossRef]
- Araki, W.; Ikeda, K.; Otomo, N.; Nakazato, Y.; Yokoyama, S.; Arai, Y. Effect of Oxygen Deficiency on Mechanical and Thermomechanical Properties of Ferroic La0.6Sr0.4Co0.2Fe0.8O3−δ. Adv. Eng. Mater. 2022, 24, 2101204. [Google Scholar] [CrossRef]
- Daga, M.; Sanna, C.; Bais, G.; Polentarutti, M.; Massardo, S.; Carnasciali, M.; Holtappels, P.; Costamagna, P.; Pani, M.; Artini, C. Impact of the electrospinning synthesis route on the structural and electrocatalytic features of the LSCF (La0.6Sr0.4Co0.2Fe0.8O3–δ) perovskite for application in solid oxide fuel cells. Solid State Ionics 2024, 413, 116620. [Google Scholar] [CrossRef]
- An, K.; Chen, Y.; Stoica, A.D. VULCAN: A “hammer” for high-temperature materials research. MRS Bull. 2019, 44, 878–885. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef] [PubMed]
- Chase, M.W., Jr. NIST-JANAF Thermochemical Tables, Monograph 9, 4th ed.; American Chemical Society: Washington, DC, USA, 1998. [Google Scholar]
- An, K. Data reduction and interactive visualization software for event mode neutron diffraction. In ORNL Report, ORNL-TM-2012; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2012; p. 621. Available online: https://neutrons.ornl.gov/sites/default/files/VDRIVE%20manual_1.pdf (accessed on 1 July 2024).
- Larson, A.C.; Von Dreele, R.B. General structure analysis system (GSAS). In Los Alamos National Laboratory Report LAUR; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004; pp. 86–748. Available online: http://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/gsas/manual/GSASManual.pdf. (accessed on 1 July 2024).
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Rousse, G.; Masquelier, C.; Rodríguez-Carvajal, J.; Elkaim, E.; Lauriat, J.P.; Martínez, J.L. X-ray Study of the Spinel LiMn2O4 at Low Temperatures. Chem. Mater. 1999, 11, 3629–3635. [Google Scholar] [CrossRef]
- Piszora, P. Temperature dependence of the order and distribution of Mn3+ and Mn4+ cations in orthorhombic LiMn2O4. J. Alloys Compd. 2004, 382, 112–118. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; An, K. Stress-induced charge-ordering process in LiMn2O4. Mater. Res. Lett. 2017, 5, 89–94. [Google Scholar] [CrossRef]
- Wills, A.S.; Raju, N.P.; Greedan, J.E. Low-Temperature Structure and Magnetic Properties of the Spinel LiMn2O4: A Frustrated Antiferromagnet and Cathode Material. Chem. Mater. 1999, 11, 1510–1518. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J.; Rousse, G.; Masquelier, C.; Hervieu, M. Electronic Crystallization in a Lithium Battery Material: Columnar Ordering of Electrons and Holes in the Spinel LiMn2O4. Phys. Rev. Lett. 1998, 81, 4660–4663. [Google Scholar] [CrossRef]
- Gaviko, V.S.; Korolev, A.V.; Arkhipov, V.E.; Bebenin, N.G.; Mukovskii, Y.M. X-ray studies of the (La,Sr)MnO3 perovskite manganite structure. Phys. Solid State 2005, 47, 1299–1305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yu, D.; An, K. A Portable Miniature Cryogenic Environment for In Situ Neutron Diffraction. Crystals 2024, 14, 640. https://doi.org/10.3390/cryst14070640
Chen Y, Yu D, An K. A Portable Miniature Cryogenic Environment for In Situ Neutron Diffraction. Crystals. 2024; 14(7):640. https://doi.org/10.3390/cryst14070640
Chicago/Turabian StyleChen, Yan, Dunji Yu, and Ke An. 2024. "A Portable Miniature Cryogenic Environment for In Situ Neutron Diffraction" Crystals 14, no. 7: 640. https://doi.org/10.3390/cryst14070640
APA StyleChen, Y., Yu, D., & An, K. (2024). A Portable Miniature Cryogenic Environment for In Situ Neutron Diffraction. Crystals, 14(7), 640. https://doi.org/10.3390/cryst14070640