Anisotropic Tensile Properties of a 14YWT Nanostructured Ferritic Alloy: On the Role of Cleavage Fracture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. P1 Tensile Properties at and Below RT
3.2. P1 Tensile Properties at and above RT
3.3. Specimen Size and NFA-1 Plate Variation for the S-Orientation Tensile Tests
4. Discussion
5. Summary and Closing Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odette, G.R.; Alinger, M.J.; Wirth, B.D. Recent Developments in Irradiation-Resistant Steels. Annu. Rev. Mater. Res. 2008, 38, 471–503. [Google Scholar] [CrossRef]
- Ukai, S. Oxide Dispersion Strengthened Steels. In Comprehensive Nuclear Materials; Konings, R., Ed.; Elsevier: Atlanta, GA, USA, 2012; pp. 241–271. [Google Scholar]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Ukai, S.; Harada, M.; Okada, H.; Inoue, M.; Nomura, S.; Shikakura, S.; Asabe, K.; Nishida, T.; Fujiwara, M. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J. Nucl. Mater. 1993, 204, 65–73. [Google Scholar] [CrossRef]
- Ukai, S.; Ohtsuka, S.; Kaito, T.; de Carlan, Y.; Ribis, J.; Malaplate, J. Oxide dispersion-strengthened/ferrite-martensite steels as core materials for Generation IV nuclear reactors-Ch 10. In Structural Materials for Generation IV Nuclear Reactors; Yvon, P., Ed.; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2017; pp. 357–414. ISBN 978-0-08-100906-2. [Google Scholar]
- Odette, G.R.; Cunningham, N.J.; Stan, T.; Alam, M.E.; De Carlan, Y. Chapter 12—Nano-Oxide Dispersion-Strengthened Steels. In Structural Alloys for Nuclear Energy Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 529–583. ISBN 9780123970466. [Google Scholar]
- Alam, M.E.; Pal, S.; Fields, K.; Maloy, S.A.; Hoelzer, D.T.; Odette, G.R. Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy. Mater. Sci. Eng. A 2016, 675, 437–448. [Google Scholar] [CrossRef]
- Alam, M.E.; Pal, S.; Maloy, S.A.; Odette, G.R. On delamination toughening of a 14YWT nanostructured ferritic alloy. Acta Mater. 2017, 136, 61–73. [Google Scholar] [CrossRef]
- Odette, G.R. On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science. Scr. Mater. 2018, 143, 142–148. [Google Scholar] [CrossRef]
- Kasada, R.; Lee, S.G.; Isselin, J.; Lee, J.H.; Omura, T.; Kimura, A.; Okuda, T.; Inoue, M.; Ukai, S.; Ohnuki, S.; et al. Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels. J. Nucl. Mater. 2011, 417, 180–184. [Google Scholar] [CrossRef]
- Pal, S.; Alam, M.E.; Maloy, S.A.; Hoelzer, D.T.; Odette, G.R. Texture evolution and microcracking mechanisms in as-extruded and cross-rolled conditions of a 14YWT nanostructured ferritic alloy. Acta Mater. 2018, 152, 338–357. [Google Scholar] [CrossRef]
- Ukai, S.; Izawa, W.; Oono, N.; Hayashi, S.; Kohno, Y.; Ohtsuka, S.; Kaito, T. Charpy impact property related to {100} cleavage fracture in 15CrODS steel. Mater. Sci. Technol. 2014, 30, 1709–1714. [Google Scholar] [CrossRef]
- Cunningham, N.J.; Wu, Y.; Odette, G.R.; Hoelzer, D.T.; Maloy, S.A. Characterization of a larger best practice heat of 14YWT in annealed powder, HIP consolidated and extruded forms. DOE Fusion React. Mater. Progr. Semiannu. Prog. Rep. 2013, 54, 15–26. [Google Scholar]
- ASTM E8M-15a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- Kim, J.H.; Byun, T.S.; Hoelzer, D.T.; Park, C.H.; Yeom, J.T.; Hong, J.K. Temperature dependence of strengthening mechanisms in the nanostructured ferritic alloy 14YWT: Part II—Mechanistic models and predictions. Mater. Sci. Eng. A 2013, 559, 111–118. [Google Scholar] [CrossRef]
- Martin, M.L.; Fenske, J.A.; Liu, G.S.; Sofronis, P.; Robertson, I.M. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater. 2011, 59, 1601–1606. [Google Scholar] [CrossRef]
- Wong, T.F.; Wong, R.H.C.; Chau, K.T.; Tang, C.A. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech. Mater. 2006, 38, 664–681. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rinne, H. The Weibull Distribution: A Handbook; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- ASTM E1921-20; Standard Test Method for Determination of Reference Temperature, to, for Ferritic Steels in the Transition Range. ASTM International: West Conshohocken, PA, USA, 2020.
- Odette, G.R.; Rathbun, H.J.; Hribernik, M.; Yamamoto, T.; He, M.; Spätig, P. A Multiscale Approach to Measuring and Modeling Cleavage Fracture Toughness in Structural Steels. In Materials Issues for Generation IV Systems; Ghetta, V., Gorse, D., Mazière, D., Pontikis, V., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 203–226. [Google Scholar]
- Hribernik, M.L. Cleavage Oriented Iron Single Crystal Fracture Toughness. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2006. [Google Scholar]
- Danzer, R.; Supancic, P.; Pascual, J.; Lube, T. Fracture statistics of ceramics—Weibull statistics and deviations from Weibull statistics. Eng. Fract. Mech. 2007, 74, 2919–2932. [Google Scholar] [CrossRef]
Test Temp. (°C) | Specimen Orientation | σy or σf, MPa | σu, MPa | εu, % | εt, % | RA, % |
---|---|---|---|---|---|---|
23 | S | 708 ± 57 | 730 ± 92 | 0.2 ± 0.3 | 0.2 ± 0.3 | 4 ± 2 |
L | 1042 ± 102 | 1133 ± 100 | 3.8 ± 3.7 | 12.9 ± 1.5 | 56 ± 8 | |
−50 | S | 550 ± 8 | 550 ± 8 | 0 ± 0 | 0 ± 0 | 0 |
L | 1073 ± 65 | 1183 ± 76 | 6.9 ± 4 | 15.7 ± 0.7 | 50 ± 4 | |
−100 | S | 368 ± 107 | 368 ± 107 | 0 ± 0 | 0 ± 0 | 0 |
L | 1162 ± 54 | 1293 ± 62 | 5.7 ± 6 | 14.8 ± 1.8 | 56 ± 14 | |
−150 | S | 316 ± 43 | 316 ± 43 | 0 ± 0 | 0 ± 0 | 0 |
L | 1332 ± 69 | 1453 ± 103 | 6 ± 6.5 | 13 ± 5 | 51 ± 3 | |
−196 | S | 372 ± 23 | 372 ± 23 | 0 ± 0 | 0 ± 0 | 0 |
L | 1555 ± 121 | 1643 ± 112 | 1.0 ± 0 | 7.9 ± 0.7 | 31 ± 6 |
Test Temp. (°C) | Specimen Orientation | σy, MPa | σu, MPa | εu, % | εt, % |
---|---|---|---|---|---|
23 | S | 708 ± 57 | 730 ± 92 | 0.2 ± 0.3 | 0.2 ± 0.3 |
L | 1042 ± 102 | 1133 ± 100 | 3.8 ± 3.7 | 12.9 ± 1.5 | |
100 | S | 705 | 912 | 2.3 | 2.3 |
L | - | - | - | - | |
200 | S | 706 ± 9 | 911 ± 8 | 5.4 ± 1.2 | 8.6 ± 1.6 |
L | 982 ± 25 | 1106 ± 21 | 4.8 ± 1.5 | 10.4 ± 1.5 | |
400 | S | 680 | 759 | 3.2 | 10.7 |
L | 882 ± 21 | 960 ± 34 | 4.5 ± 1.3 | 9.2 ± 1.7 | |
600 | S | 484 | 529 | 1.7 | 13.5 |
L | 584 ± 35 | 630 ± 35 | 2.3 ± 1.0 | 16.5 ± 3.9 | |
800 | S | 192 ± 12 | 201 ± 12 | 0.7 ± 0.0 | 16.2 ± 0.3 |
L | 251 ± 6 | 278 ±1 | 3.4 ± 0 | 17.3 ± 0.4 |
Test Temp. (°C) | NFA-1 Plate | Specimen Type | Specimen ID | σy, MPa | σu, MPa | εt, % |
---|---|---|---|---|---|---|
23 | P1 | SSJ2 | ST-01 | 765 | 832 | 0.5 |
SSJ2 | ST-02 | 707 | 707 | 0 | ||
SSJ2 | ST-13 | 652 | 652 | 0 | ||
P2 | SSJ2 | ST-14 | 777 | 1020 | 3.6 | |
µ-SSJ2 | ST-15 | 1074 | 1074 | 0 | ||
µ-SSJ2 | ST-16 | 1100 | 1100 | 0 | ||
−50 | P1 | SSJ2 | ST-L1 | 544 | 544 | 0 |
SSJ2 | ST-L8 | 555 | 555 | 0 | ||
P2 | µ-SSJ2 | ST-L38 | 717 | 717 | 0 | |
−100 | P1 | SSJ2 | ST-L2 | 443 | 443 | 0 |
SSJ2 | ST-L9 | 292 | 292 | 0 | ||
P2 | SSJ2 | ST-L11 | 551 | 551 | 0 | |
SSJ2 | ST-L12 | 749 | 749 | 0 | ||
SSJ2 | ST-L13 | 538 | 538 | 0 | ||
SSJ2 | ST-L14 | 428 | 428 | 0 | ||
SSJ2 | ST-L15 | 686 | 686 | 0 | ||
SSJ2 | ST-L16 | 625 | 625 | 0 | ||
SSJ2 | ST-L17 | 586 | 586 | 0 | ||
SSJ2 | ST-L18 | 423 | 423 | 0 | ||
µ-SSJ2 | ST-L20 | 781 | 781 | 0 | ||
µ-SSJ2 | ST-L21 | 605 | 605 | 0 | ||
µ-SSJ2 | ST-L22 | 734 | 898 | 3.2 | ||
µ-SSJ2 | ST-L23 | 658 | 658 | 0 | ||
µ-SSJ2 | ST-L24 | 486 | 486 | 0 | ||
−150 | P1 | SSJ2 | ST-L3 | 285 | 285 | 0 |
SSJ2 | ST-L10 | 346 | 346 | 0 | ||
P2 | SSJ2 | ST-L5 | 458 | 458 | 0 | |
SSJ2 | ST-L6 | 410 | 410 | 0 | ||
SSJ2 | ST-L19 | 524 | 524 | 0 | ||
µ-SSJ2 | ST-L25 | 553 | 553 | 0 | ||
µ-SSJ2 | ST-L26 | 249 | 249 | 0 | ||
µ-SSJ2 | ST-L27 | 393 | 393 | 0 | ||
µ-SSJ2 | ST-L29 | 342 | 342 | 0 | ||
µ-SSJ2 | ST-L30 | 414 | 414 | 0 | ||
µ-SSJ2 | ST-L3 | 335 | 335 | 0 | ||
µ-SSJ2 | ST-L32 | 474 | 474 | 0 | ||
µ-SSJ2 | ST-L33 | 298 | 298 | 0 | ||
µ-SSJ2 | ST-L34 | 277 | 277 | 0 | ||
µ-SSJ2 | ST-L35 | 365 | 365 | 0 | ||
−196 | P1 | SSJ2 | ST-L4 | 388 | 388 | 0 |
SSJ2 | ST-L7 | 356 | 356 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.E.; Odette, G.R. Anisotropic Tensile Properties of a 14YWT Nanostructured Ferritic Alloy: On the Role of Cleavage Fracture. Crystals 2024, 14, 439. https://doi.org/10.3390/cryst14050439
Alam ME, Odette GR. Anisotropic Tensile Properties of a 14YWT Nanostructured Ferritic Alloy: On the Role of Cleavage Fracture. Crystals. 2024; 14(5):439. https://doi.org/10.3390/cryst14050439
Chicago/Turabian StyleAlam, Md Ershadul, and G. Robert Odette. 2024. "Anisotropic Tensile Properties of a 14YWT Nanostructured Ferritic Alloy: On the Role of Cleavage Fracture" Crystals 14, no. 5: 439. https://doi.org/10.3390/cryst14050439
APA StyleAlam, M. E., & Odette, G. R. (2024). Anisotropic Tensile Properties of a 14YWT Nanostructured Ferritic Alloy: On the Role of Cleavage Fracture. Crystals, 14(5), 439. https://doi.org/10.3390/cryst14050439