Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices
Abstract
1. Introduction
2. Design and Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Min, S.H.; Jung, H.; Kwon, O.; Sattorov, M.; Kim, S.; Park, S.H.; Hong, D.; Kim, S.; Park, C.; Hong, B.H.; et al. Analysis of Electromagnetic Pulse Effects under High-Power Microwave Sources. IEEE Access 2021, 9, 136775–136791. [Google Scholar] [CrossRef]
- Selvaraj, J.; Ware, D.; Dayanikli, G.Y.; Gerdes, R.M.; Gaunkar, N.P.; Mina, M. Electromagnetic induction attacks against embedded systems. In Proceedings of the ASIACCS 2018—ACM Asia Conference on Computer and Communications Security, Incheon, Republic of Korea, 4 June 2018; pp. 499–510. [Google Scholar] [CrossRef]
- Li, F.; Chai, C.; Wu, H.; Wang, L.; Liang, Q.; An, Q.; Yang, Y. Study on high power microwave nonlinear effects and degradation characteristics of C-band low noise amplifier. Microelectron. Reliab. 2022, 128, 114427. [Google Scholar] [CrossRef]
- Giri, D.V.; Sabath, F.; Hoad, R. High-Power Electromagnetic Effects on Electronic Systems; Artech House: Norwood, MA, USA, 2020. [Google Scholar]
- Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int. J. Mol. Sci. 2022, 23, 9288. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Y.; Zhou, X.; Zhang, D.; Nie, Y. Investigation on Falling and Damage Mechanisms of UAV Illuminated by HPM Pulses. IEEE Trans. Electromagn. Compat. 2022, 64, 1412–1422. [Google Scholar] [CrossRef]
- Brauer, F.; Sabath, F.; Haseborg, J.L.T. Susceptibility of IT network systems to interferences by HPEM. In Proceedings of the 2009 IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, USA, 17–21 August 2009; pp. 237–242. [Google Scholar] [CrossRef]
- Yu, X.H.; Chai, C.C.; Liu, Y.; Yang, Y.T.; Xi, X.W. Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor. Chin. Phys. B 2015, 24, 048502. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, X.; Cheng, E.; Wan, H.; Chen, Y. Investigation on Effects of HPM Pulse on UAV’s Datalink. IEEE Trans. Electromagn. Compat. 2020, 62, 829–839. [Google Scholar] [CrossRef]
- Haydon, S. Designing and understanding a PCB trace used to deliver EMI to a CMOS microchip using a GTEM. In Proceedings of the 2023 24th International Conference on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, Croatia, 27–29 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Sayler, K. Department of Defense Directed Energy Weapons: Background and Issues for Congress; Congressional Research Service: Norwood, MA, USA, 2022.
- Ma, Z.Y.; Chai, C.C.; Ren, X.R.; Yang, Y.T.; Chen, B.; Zhao, Y.B. Effects of microwave pulse-width damage on a bipolar transistor. Chin. Phys. B 2012, 21, 058502. [Google Scholar] [CrossRef]
- Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Advancements in electromagnetic interference shielding cementitious composites. Constr. Build. Mater. 2020, 231, 117116. [Google Scholar] [CrossRef]
- Miligy, A.F.; Madany, Y.M.; Soliman, A.M. Investigation and Design of Microwave Receiver Protector for Meteorological Radar Applications. In Proceedings of the 2021 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 13–15 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Xiong, H. Design of Energy-Selective Surface with an Ultra-wide Shielding Band for High-Power Microwave Protection. ACS Appl. Electron. Mater. 2024, 6, 696–701. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, L.; Zhao, X.; Gao, R.X.K. An Ultrawideband Frequency Selective Surface Absorber with High Polarization-Independent Angular Stability. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 789–793. [Google Scholar] [CrossRef]
- Absorber, A.U.; Absorption, M. An Ultra-Wideband Absorber Based on Mixed Absorption Mechanisms. IEEE Trans. Antennas Propag. 2023, 71, 10009–10013. [Google Scholar] [CrossRef]
- Shukoor, M.A.; Dey, S. Wideband Reconfigurable Multifunctional Absorber/Reflector with Bandpass/Bandstop Filtering and Band-Notch Absorption for. IEEE Trans. Electromagn. Compat. 2024, 66, 153–160. [Google Scholar] [CrossRef]
- Green, M.; Chen, X. Recent progress of nanomaterials for microwave absorption. J. Mater. 2019, 5, 503–541. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, G.S.; Jyotibhusan, P. Highly Angular-Stable Optically Transparent Microwave Absorber with Wide Absorption Bandwidth. IEEE Lett. Electromagn. Compat. Pract. Appl. 2022, 4, 114–119. [Google Scholar] [CrossRef]
- Hong, Z.; Yu, X.; Xing, Y.; Xue, M.; Luo, Y.; Yin, Z.; Xie, C.; Yang, Y.; Ren, Z. Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties. J. Compos. Sci. 2023, 7, 15. [Google Scholar] [CrossRef]
- Govindarajan, G.; Nabi, G.; Mohammed, A.; Savarimuthu, K.; Veeraselvam, A. Miniaturized electromagnetic absorber for millimeter—Wave RADAR systems. Appl. Phys. A 2023, 129, 577. [Google Scholar] [CrossRef]
- Berka, M.; Özkaya, U.; Islam, T.; El, M. A miniaturized folded square split ring resonator cell based dual band polarization insensitive metamaterial absorber for C- and Ku- band applications. Opt. Quantum Electron. 2023, 55, 699. [Google Scholar] [CrossRef]
- Elmahaishi, M.F.; Ismail, I.; Muhammad, F.D. A review on electromagnetic microwave absorption properties: Their materials and performance. J. Mater. Res. Technol. 2022, 20, 2188–2220. [Google Scholar] [CrossRef]
- Mishra, R.R.; Sharma, A.K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos. Part A Appl. Sci. Manuf. 2016, 81, 78–97. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Gong, W.; Wang, T.; Wang, X.; Gong, R. Temperature-insensitive and enhanced microwave absorption of TiB2/Al2O3/MgAl2O4 composites: Design, fabrication, and characterization. J. Alloys Compd. 2022, 894, 162144. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, K.; Wu, G.; Xing, H.; Wu, H. Recent progresses of high-temperature microwave-absorbing materials. Nano 2018, 13, 1830005. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Li, J.; Guo, Y.; Tian, W.; Liu, Y.; Wu, B.; Deng, L.; Mahmood, N.; Jian, X. Polymer-based nanocomposites: Role of interface for effective microwave absorption. Mater. Today Phys. 2023, 31, 100981. [Google Scholar] [CrossRef]
- Chandrasekhar, P.; Naishadham, K. Broadband microwave absorption and shielding properties of a poly(aniline). Synth. Met. 1999, 105, 115–120. [Google Scholar] [CrossRef]
- Wen, M.; Zhao, Y.; Li, Z.; Lai, S.; Zeng, Q.; Liu, C.; Liu, Y. Preparation of lignin-based carbon/polyaniline composites for advanced microwave absorber. Diam. Relat. Mater. 2021, 111, 108219. [Google Scholar] [CrossRef]
- Kulkarni, V.G.; Campbell, L.D.; Mathew, W.R. Thermal stability of polyaniline. Synth. Met. 1989, 30, 321–325. [Google Scholar] [CrossRef]
- Ding, F.; Cui, Y.; Ge, X.; Jin, Y.; He, S. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc. Natl. Acad. Sci. USA 2021, 118, e2110490118. [Google Scholar] [CrossRef] [PubMed]
- Almoneef, T.S.; Saeed, S.M.; Aldhaeebi, M.A.; Bait-Suwailam, M.M. Wideband metasurface for microwave energy harvesting. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 7–12 July 2019; pp. 1165–1166. [Google Scholar] [CrossRef]
- Feng, T.; Zhu, L. Designs of 3-D Microwave Absorbers with Synthesizable Absorptive Performances. IEEE Trans. Electromagn. Compat. 2024, 66, 80–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, Y.; Pang, K. Optimization and design on multi-layers of dielectric metasurface as broadband terahertz quarter wave plate. J. Opt. 2022, 24, 105101. [Google Scholar] [CrossRef]
- Hosseinbeig, A. Characterization of Relative Complex Permittivity and Permeability for Magneto-Dielectric Sheets. IEEE Trans. Electromagn. Compat. 2018, 60, 1786–1794. [Google Scholar] [CrossRef]
- Ansari, M.A.H.; Jha, A.K.; Akhter, Z.; Akhtar, M.J. Multi-Band RF Planar Sensor Using Complementary Split Ring Resonator for Testing of Dielectric Materials. IEEE Sens. J. 2018, 18, 6596–6606. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Mohanty, A.; Acharya, O.P.; Appasani, B. A Review on Metamaterial Absorbers: Microwave to Optical. Front. Phys. 2022, 10, 893791. [Google Scholar] [CrossRef]
- Sheta, E.M.; Choudhury, P.K.; Ibrahim, A.M.A. Polarization-insensitive ultra-wideband metamaterial absorber comprising different forms of ZrN structures at the metasurface. Opt. Mater. 2022, 133, 112990. [Google Scholar] [CrossRef]
- Sheta, E.M.; Choudhury, P.K. Vanadium nitride-based ultra-wideband nearly perfect metamaterial absorber. J. Nanophotonics 2021, 15, 036007. [Google Scholar] [CrossRef]
- Yuan, J.; Packowski, M.A. The thermal degradation and decomposition of brominated epoxy FR-4 laminates. In Proceedings of the IEEE 43rd Electronic Components and Technology Conference (ECTC ’93), Orlando, FL, USA, 1–4 June 1993; pp. 330–335. [Google Scholar] [CrossRef]
- Shukoor, M.A.; Dey, S.; Koul, S.K. Broadband polarization insensitive wide angular stable dual-split square ring circuit analog absorber for radar cross section and electromagnetic interference shielding applications. Int. J. RF Microw. Comput. Eng. 2022, 32, e23085. [Google Scholar] [CrossRef]
- Liu, S.; Pei, C.; Khan, L.; Wang, H.; Tao, S. Multiobjective Optimization of Coding Metamaterial for Low-Profile and Broadband Microwave Absorber. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 379–383. [Google Scholar] [CrossRef]
Ref. # | Operating Frequency | Thickness | Angular Stability | Configuration | Investigation | Comments |
---|---|---|---|---|---|---|
[23] | 2–16 GHz | 2 mm | θi ≤ 20° | FSS | Full-wave simulation | Selective absorption, Simple structure, unfit for HPM |
[43] | 6–30 GHz | 4 mm | θi ≤ 45° | Couple of FSS, and air spacer | Simulation and measurement | Simple fabrication, wide bandwidth, unfit for HPM |
[44] | 7–44 GHz | 4.05 mm | θi ≤ 30° | Coding metamaterial | Simulation and measurement | Complex structure, wide bandwidth, unfit for HPM |
[20] | 4–16 GHz | 6.5 mm | θi ≤ 50° | FSS and layered materials | Simulation and measurement | Relatively easy fabrication, medium bandwidth, unfit for HPM |
[18] | 1–8 GHz | 12 mm | θi ≤ 45° | FSS, inductive grid, and two air spacers | Simulation and measurement | Complex structure, less bandwidth, unfit for HPM |
This work | 1–20 GHz | 5 mm | θi ≤ 50° | Layered structure | Full-wave simulation | Simple structure, ultra-wide bandwidth, suitable for HPM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheta, E.M.; Sutinjo, A.T. Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices. Crystals 2024, 14, 391. https://doi.org/10.3390/cryst14050391
Sheta EM, Sutinjo AT. Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices. Crystals. 2024; 14(5):391. https://doi.org/10.3390/cryst14050391
Chicago/Turabian StyleSheta, Essameldin M., and Adrian T. Sutinjo. 2024. "Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices" Crystals 14, no. 5: 391. https://doi.org/10.3390/cryst14050391
APA StyleSheta, E. M., & Sutinjo, A. T. (2024). Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices. Crystals, 14(5), 391. https://doi.org/10.3390/cryst14050391