Single Crystal Growth and X-ray Diffraction Characterization of a Quasi-Spin Chain Compound, Li2CuO2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Single Crystal Growth
3.2. Structural Characterizations
3.3. Laue X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schulz, H. Correlated Fermions and Transport in Mesoscopic Systems; Martin, T., Montambaux, G., Tran Thanh Van, J., Eds.; Editions Frontières: Gif-sur-Yvette, France, 1996. [Google Scholar]
- Giamarchi, T. Quantum Physics in One Dimension; Clarendon Press: Oxford, UK, 2004. [Google Scholar]
- Rice, T.M. The rich variety of cuprates. Phys. B Condens. Matter 1997, 241–243, 5–12. [Google Scholar] [CrossRef]
- Vasiliev, A.; Volkova, O.; Zvereva, E.; Markina, M. Milestones of low-D quantum magnetism. NPJ Quantum Mater. 2018, 3, 18. [Google Scholar] [CrossRef]
- Dagotto, E. Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity. Rep. Prog. Phys. 1999, 62, 1525. [Google Scholar] [CrossRef]
- Johnston, D.C.; Kremer, R.K.; Troyer, M.; Wang, X.; Klümper, A.; Bud’ko, S.L.; Panchula, A.F.; Canfield, P.C. Thermodynamics of spin S = 1/2 antiferromagnetic uniform and alternating-exchange Heisenberg chains. Phys. Rev. B 2000, 61, 9558. [Google Scholar] [CrossRef]
- Cowley, R.A. Dynamical Properties of Unconventional Magnetic Systems; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1998; Volume 349. [Google Scholar]
- Haldane, F.D.M. Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State. Phys. Rev. Lett. 1983, 50, 1153. [Google Scholar] [CrossRef]
- Honda, Z.; Asakawa, H.; Katsumata, K. Magnetic Field versus Temperature Phase Diagram of a Quasi-One-Dimensional S = 1 Heisenberg Antiferromagnet. Phys. Rev. Lett. 1998, 81, 2566. [Google Scholar] [CrossRef]
- Schlappa, J.; Wohlfeld, K.; Zhou, K.J.; Mourigal, M.; Haverkort, M.W.; Strocov, V.N.; Hozoi, L.; Monney, C.; Nishimoto, S.; Singh, S.; et al. Spin–orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3. Nature 2012, 485, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.; Monney, C.; Bisogni, V.; Zhou, K.-J.; Kraus, R.; Behr, G.; Strocov, V.N.; Malek, J.; Drechsler, S.-L.; Geck, J.; et al. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li2CuO2. Nat. Commun. 2016, 7, 10563. [Google Scholar] [CrossRef]
- Fujisawa, H.; Yokoya, T.; Takahashi, T.; Miyasaka, S.; Kibune, M.; Takagi, H. Angle-resolved photoemission study of Sr2CuO3. Phys. Rev. B 1990, 59, 7358. [Google Scholar] [CrossRef]
- Kim, C.; Matsuura, A.Y.; Shen, Z.-X.; Motoyama, N.; Eisaki, H.; Uchida, S.; Tohyama, T.; Maekawa, S. Observation of Spin-Charge Separation in One-Dimensional SrCuO2. Phys. Rev. Lett. 1996, 77, 4054. [Google Scholar] [CrossRef]
- Hase, M.; Terasaki, I.; Uchinokura, K. Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. Phys. Rev. Lett. 1993, 70, 3651. [Google Scholar] [CrossRef] [PubMed]
- Zoghlin, E.; Stone, M.B.; Wilson, S.D. Refined spin-wave model and multimagnon bound states in Li2CuO2. Phys. Rev. B 2023, 108, 064408. [Google Scholar] [CrossRef]
- Shu, G.J.; Tian, J.C.; Lin, C.K.; Hayashi, M.; Liou, S.C.; Chen, W.T.; Wong, D.P.; Liou, H.L.; Chou, F.C. Corrigendum: Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2−δ. New J. Phys. 2018, 20, 059501. [Google Scholar] [CrossRef]
- Kuzian, R.O.; Klingeler, R.; Lorenz, W.E.A.; Wizent, N.; Nishimoto, S.; Nitzsche, U.; Rosner, H.; Milosavljevic, D.; Hozoi, L.; Yadav, R.; et al. Comment on ’Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2. New J. Phys. 2018, 20, 058001. [Google Scholar] [CrossRef]
- Wizent, N.; Behr, G.; Loser, W.; Buchner, B.; Klingeler, R. Challenges in the crystal growth of Li2CuO2 and LiMnPO4. J. Cryst. Growth 2011, 318, 995–999. [Google Scholar] [CrossRef]
- Nishimoto, S.; Drechsler, S.-L.; Kuzian, R.; Richter, J.; van den Brink, J. Interplay of interchain interactions and exchange anisotropy: Stability and fragility of multipolar states in spin-1/2 quasi-one-dimensional frustrated helimagnets. Phys. Rev. B 2015, 92, 214415. [Google Scholar] [CrossRef]
- Nishimoto, S.; Drechsler, S.-L.; Kuzian, R.O.; van den Brink, J.; Richter, J.; Lorenz, W.E.A.; Skourski, Y.; Klingeler, R.; Büchner, B. Saturation Field of Frustrated Chain Cuprates: Broad Regions of Predominant Interchain Coupling. Phys. Rev. Lett. 2011, 107, 097201. [Google Scholar] [CrossRef]
- Kordatos, A.; Kuganathan, N.; Kelaidis, N.; Iyngaran, P.; Chroneos, A. Defects and lithium migration in Li2CuO2. Sci. Rep. 2018, 8, 6754. [Google Scholar] [CrossRef]
- Chung, E.M.L.; McIntyre, G.J.; Paul, D.M.; Balakrishnan, G.; Lees, M.R. Oxygen moment formation and canting in Li2CuO2. Phys. Rev. B 2003, 68, 144410. [Google Scholar] [CrossRef]
- Hoppe, R.; Rieck, H. Die Kristallstruktur von Li2CuO2. Z. Fur Anorg. Und Allg. Chem. Band 1970, 379, 157–164. [Google Scholar] [CrossRef]
- Sapiña, F.; Rodríguez-Carvajal, J.; Sanchis, M.J.; Ibáñez, R.; Beltrán, A.; Beltrán, D. Crystal and magnetic structure of Li2CuO2. Solid State Commun. 1990, 74, 779–784. [Google Scholar] [CrossRef]
- Sreedhar, K.; Ganguly, P. Magnetic susceptibility studies on ternary oxides of copper(II). Inorg. Chem. 1988, 27, 2261. [Google Scholar] [CrossRef]
- Boehm, M.; Coad, S.; Roessli, B.; Zheludev, A.; Zolliker, M.; Böni, P.; Paul, D.M.; Eisaki, H.; Motoyama, N.; Uchida, S. Competing exchange interactions in Li2CuO2. Europhys. Lett. 1998, 43, 77–82. [Google Scholar] [CrossRef]
- Ortega, R.J.; Jensen, P.J.; Rao, K.V.; Sapiña, F.; Beltrañ, D.; Iqbal, Z.; Cooley, J.C.; Smith, J.L. A field induced ferromagnetic-like transition below 2.8 K in Li2CuO2 An experimental and theoretical study. J. Appl. Phys. 1998, 83, 6542–6544. [Google Scholar] [CrossRef]
- Staub, U.; Roessli, B.; Amato, A. Magnetic ordering in Li2CuO2 studied by μSR technique. Phys. B 2000, 299, 289–290. [Google Scholar] [CrossRef]
- Learmonth, T.; McGuinness, C.; Glans, P.-A.; Downes, J.E.; Schmitt, T.; Duda, L.-C.; Guo, J.-H.; Chou, F.C.; Smith, K.E. Observation of multiple Zhang-Rice excitations in a correlated solid: Resonant inelastic X-ray scattering study of Li2CuO2. Europhys. Lett. 2007, 79, 47012. [Google Scholar] [CrossRef]
- Monney, C.; Bisogni, V.; Zhou, K.-J.; Kraus, R.; Strocov, V.N.; Behr, G.; Málek, J.; Kuzian, R.; Drechsler, S.-L.; Johnston, S.; et al. Determining the Short-Range Spin Correlations in the Spin-Chain Li2CuO2 and CuGeO3 Compounds Using Resonant Inelastic X-Ray Scattering. Phys. Rev. Lett. 2013, 110, 087403. [Google Scholar] [CrossRef]
- Mizuno, Y.; Tohyama, T.; Maekawa, S.; Osafune, T.; Motoyama, N.; Eisaki, H.; Uchida, S. Electronic states and magnetic properties of edge-sharing Cu-O chains. Phys. Rev. B 1998, 57, 5326. [Google Scholar] [CrossRef]
- Atzkern, S.; Knupfer, M.; Golden, M.S.; Fink, J.; Waidacher, C.; Richter, J.; Becker, K.W.; Motoyama, N.; Eisaki, H.; Uchida, S. Dynamics of a hole in a CuO4 plaquette: Electron energy-loss spectroscopy of Li2CuO2. Phys. Rev. B 2000, 62, 784. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Hill, J.P.; Chou, F.C.; Casa, D.; Gog, T.; Venkataraman, C.T. Charge and orbital excitations in Li2CuO2. Phys. Rev. B 2004, 69, 155105. [Google Scholar] [CrossRef]
- Ebisu, S.; Komatsu, T.; Wada, N.; Hashiguchi, T.; Kichambare, P.; Nagata, S. Extremely large short-range order in an antiferromagnet Li2CuO2. J. Phys. Chem. Solids 1998, 59, 1407–1416. [Google Scholar] [CrossRef]
- Ramos-Sanchez, G.; Romero-Ibarra, I.C.; Vazquez-Arenas, J.; Tapia, C.; Aguilar-Eseiza, N.; Gonzalez, I. Controlling Li2CuO2 single phase transition to preserve cathode capacity and cyclability in Li-ion batteries. Solid State Ionics 2017, 303, 89. [Google Scholar] [CrossRef]
- Kawamata, S.; Okuda, K.; Kindo, K. ESR study on Li2CuO2 single crystal. J. Magn. Magn. Mater. 2004, 272–276 Pt 2, 939–940. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Cologne Laue Indexation Program. Available online: https://clip4.sourceforge.net/ (accessed on 17 February 2024).
Atom | Wyck | x | y | z | B (Å) | |
---|---|---|---|---|---|---|
Li | 4j | 0.5 | 0 | 0.18487 | 1 | 0.00032 |
Cu | 2b | 0 | 0.5 | 0.5 | 1 | 0.00032 |
O | 4i | 0 | 0 | 0.36189 | 1 | 0.00032 |
a (Å) | b (Å) | c (Å) | Cu-O-Cu (°) | Cu-Cu (Å) | Cu-O (Å) | Reference | |
---|---|---|---|---|---|---|---|
Experiment | 3.6744 | 2.8600 | 9.4257 | 95.37 | 2.8600 | 1.9338 | this work |
Experiment | 3.6615 | 2.8627 | 9.3925 | 93.96 | 2.8628 | 1.9577 | Ref. [24] |
Experiment | 3.65 | 2.86 | 9.38 | - | - | - | Ref. [34] |
Experiment | 3.6614 | 2.8648 | 9.3969 | 91 | 1.987 | Ref. [16] | |
Experiment: Li2CuO1.71 | 3.6609 | 2.8638 | 9.3934 | 95.55 | - | - | Ref. [16] |
DFT, GGA + PBE | 3.5779 | 2.8628 | 9.3926 | - | - | 1.9162 | Ref. [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balodhi, A.; Kim, M.G. Single Crystal Growth and X-ray Diffraction Characterization of a Quasi-Spin Chain Compound, Li2CuO2. Crystals 2024, 14, 288. https://doi.org/10.3390/cryst14030288
Balodhi A, Kim MG. Single Crystal Growth and X-ray Diffraction Characterization of a Quasi-Spin Chain Compound, Li2CuO2. Crystals. 2024; 14(3):288. https://doi.org/10.3390/cryst14030288
Chicago/Turabian StyleBalodhi, Ashiwini, and Min Gyu Kim. 2024. "Single Crystal Growth and X-ray Diffraction Characterization of a Quasi-Spin Chain Compound, Li2CuO2" Crystals 14, no. 3: 288. https://doi.org/10.3390/cryst14030288