Thermodynamics of Iron Ammonia Synthesis Catalyst Sintering
Abstract
1. Introduction
2. Experiment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathaudhu, S.N.; Boyce, B.L. Thermal Stability: The Next Frontier for Nanocrystalline Materials. JOM 2015, 67, 2785–2787. [Google Scholar] [CrossRef]
- Gertsman, V.Y.; Birringer, R. On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 1994, 30, 577–581. [Google Scholar] [CrossRef]
- Rupert, T.J.; Gianola, D.S.; Gan, Y.; Hemker, K.J. Experimental Observations of Stress-Driven Grain Boundary Migration. Science 2009, 326, 1686–1690. [Google Scholar] [CrossRef]
- Zhang, K.; Weertman, J.R.; Eastman, J.A. The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 2004, 85, 5197–5199. [Google Scholar] [CrossRef]
- Weertman, J.R. Retaining the Nano in Nanocrystalline Alloys. Science 2012, 337, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Natter, H.; Schmelzer, M.; Löffler, M.-S.; Krill, C.E.; Fitch, A.; Hempelmann, R. Grain-Growth Kinetics of Nanocrystalline Iron Studied in Situ by Synchrotron Real-Time X-ray Diffraction. J. Phys. Chem. B 2000, 104, 2467–2476. [Google Scholar] [CrossRef]
- Smith, C.S. Grains, phases, and interphases: An interpretation of microstructure. Trans. Metall. Soc. AIME 1948, 175, 15–51. [Google Scholar]
- Burke, J.E. Some factor affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 1949, 180, 73–91. [Google Scholar]
- Burke, J.E.; Turnbull, D. Recrystallization and grain growth. Prog. Met. Phys. 1952, 3, 220–292. [Google Scholar] [CrossRef]
- Hösel, M.; Krebs, F.C. Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J. Mater. Chem. 2012, 22, 15683–15688. [Google Scholar] [CrossRef]
- Layani, M.; Magdassi, S. Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. J. Mater. Chem. 2011, 21, 15378–15382. [Google Scholar] [CrossRef]
- Asoro, M.A.; Kovar, D.; Shao-Horn, Y.; Allard, L.F.; Ferreira, P. Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 2010, 21, 025701. [Google Scholar] [CrossRef]
- Cao, Y.; Denny, M.S., Jr.; Caspar, J.V.; Farneth, W.E.; Guo, Q.; Ionkin, A.S.; Johnson, L.K.; Lu, M.; Malajovich, I.; Radu, D.; et al. High-Efficiency Solution-Processed Cu2ZnSn(S, Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles. J. Am. Chem. Soc. 2012, 134, 15644–15647. [Google Scholar] [CrossRef]
- Luding, S.; Manetsberger, K.; Müllers, J. A discrete model for long time sintering. J. Mech. Phys. Solids 2005, 53, 455–491. [Google Scholar] [CrossRef]
- Braginsky, M.; Tikare, V.; Olevsky, E. Numerical simulation of solid state sintering. Int. J. Solids Struct. 2005, 42, 621–636. [Google Scholar] [CrossRef]
- Pan, J.; Huang, R. Multi-Scale Modelling of Sintering. Key Eng. Mater. 2008, 368–372, 1668–1672. [Google Scholar] [CrossRef]
- Wakai, F.; Yoshida, M.; Shinoda, Y.; Akatsu, T. Coarsening and grain growth in sintering of two particles of different sizes. Acta Mater. 2005, 53, 1361–1371. [Google Scholar] [CrossRef]
- Panigrahi, B.B. Sintering and grain growth kinetics of ball milled nanocrystalline nickel powder. Mater. Sci. Eng. A 2007, 460–461, 7–13. [Google Scholar] [CrossRef]
- Gorshkov, V.; Kuzmenko, V.; Privman, V. Nonequilibrium Kinetic Modeling of Sintering of a Layer of Dispersed Nanocrystals. CrystEngComm 2014, 16, 10395–10409. [Google Scholar] [CrossRef][Green Version]
- Shkatov, V.; Mazur, I. Modeling the Dynamic Recrystallization and Flow Curves Using the Kinetics of Static Recrystallization. Materials 2019, 12, 3024. [Google Scholar] [CrossRef]
- Zhu, K.N.; Ruan, Q.; Godfrey, A. The kinetics of grain growth in near-micrometre grain size copper produced by spark plasma sintering. IOP Conf. Ser. Mater. Sci. Eng. 2015, 89, 012060. [Google Scholar] [CrossRef]
- Arabczyk, W.; Jasińska, I.; Lendzion-Bieluń, Z. Kinetics studies of recrystallization process of metallic catalysts for ammonia synthesis. Catal. Today 2011, 169, 93–96. [Google Scholar] [CrossRef]
- Nielsen, A. (Ed.) Ammonia Catalysis and Manufacture; Springer: Berlin, Germany, 1995. [Google Scholar]
- Arabczyk, W.; Pelka, R.; Jasińska, I. Extended Surface of Materials as a Result of Chemical Equilibrium. J. Nanomater. 2014, 2014, 159. [Google Scholar] [CrossRef]
- Janecki, Z.; Gołębiowski, A.; Kałucki, K.; Arabczyk, W.; Szmidt-Szałowski, K.; Kowalczyk, Z.; Śpiewak, Z.; Ludwiczak, S. The state of research on catalysts for ammonia synthesis. Przem. Chem. 1988, 67, 479. [Google Scholar]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Pergamon Press: Oxford, UK, 2017. [Google Scholar]
- Barański, A.; Dziembaj, R.; Kotarba, A.; Łagan, J.M.; Łojewska, J.; Pieprzyk, E.; Mleczko, L.; Baerns, M. A new approach to kinetic study of wet atmosphere activation of fused iron catalyst. Appl. Catal. A 1997, 162, 133–148. [Google Scholar] [CrossRef]
- Jasińska, I.; Arabczyk, W. Kinetic Studies of the Recrystallization Process of Iron Catalyst for Ammonia Synthesis. Chem. Pap. 2005, 59, 496–499. [Google Scholar]
- Lendzion-Bieluń, Z.; Gleń, M. Studies on the recrystallization of nanocrystalline metals. Pol. J. Chem. Technol. 2007, 9, 5–7. [Google Scholar] [CrossRef]
- Kuznetsov, L.D.; Lachinov, S.S. The Effect Of Al2O3 And K2O Promoters on the activity of iron catalyst in the synthesis of ammonia. Zh. Fiz. Khim. 1959, 33, 2542. [Google Scholar]
- Boudart, M. Ammonia synthesis: The bellwether reaction in heterogeneous catalysis. Top. Catal. 1994, 1, 405–414. [Google Scholar] [CrossRef]
- Jennings, J.R. (Ed.) Catalytic Ammonia Synthesis, Fundamentals and Practice; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Schlögl, R. Handbook of Heterogeneous Catalysis; WILEY-VCH Verlag GmbH & Co., KgaA: Weinheim, Germany, 2008. [Google Scholar]
- Liu, H.Z. Ammonia Synthesis Catalysts: Innovation and Practice; World Sci Publishing Co., Ltd.: Singapore, 2013. [Google Scholar]
- Nørskov, J.K. From quantum physics to heterogeneous catalysis. Top. Catal. 1994, 1, 385–403. [Google Scholar] [CrossRef]
- Somorjai, G.A. Introduction to Surface Chemistry and Catalysis; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Ozaki, A.; Aika, K. Catalysis—Science and Technology; Anderson, J.R., Boudart, M., Eds.; Springer: Berlin, Germany, 1982; Volume 1. [Google Scholar]
- Van de Voorde, M.; Sels, B. (Eds.) Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection; Wiley-VCH: Weinheim, Germany, 2017. [Google Scholar]
- Zhou, B.; Han, S.; Raja, R.; Somorjai, G.A. Nanotechnology in Catalysis; Springer: New York, NY, USA, 2007. [Google Scholar]
- Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1–29. [Google Scholar] [CrossRef]
- Ertl, G. Surface Science and Catalysis—Studies on the Mechanism of Ammonia Synthesis: The P. H. Emmett Award Address. Catal. Rev. 1980, 21, 201–223. [Google Scholar] [CrossRef]
- Ertl, G. Physical characterization of industrial catalysts: The mechanism of ammonia synthesis. Stud. Surf. Sci. Catal. 1989, 44, 315–320. [Google Scholar]
- Somorjai, G.A.; Materer, N. Surface structure in ammonia synthesis. Top. Catal. 1994, 1, 215–231. [Google Scholar] [CrossRef]
- Ertl, G. Elementary Steps in Ammonia Synthesis. In Catalytic Ammonia Synthesis, Fundamentals and Practice; Jennings, J.R., Ed.; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Paal, Z.; Ertl, G.; Lee, S.B. Interactions of potassium, oxygen and nitrogen with polycrystalline iron surfaces. Appl. Surf. Sci. 1981, 8, 231–249. [Google Scholar] [CrossRef]
- Aika, K.; Tamaru, K. Ammonia Synthesis over Non-Iron Catalysts and Related Phenomena, Ammonia Catalysis and Manufacture; Nielsen, A., Ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Ertl, G. Reactions at Solid Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Arabczyk, W.; Müssig, H.J. Nitrogen bonding states on iron studied by PES and AES. Vacuum 1987, 37, 137–140. [Google Scholar] [CrossRef]
- Schlögl, R.; Schoonmaker, R.C.; Muhler, M.; Ertl, G. Bridging the “material gap” between single crystal studies and real catalysis. Catal. Lett. 1988, 1, 237–241. [Google Scholar] [CrossRef]
- Strongin, D.R.; Bare, S.R.; Somorjai, G.A. The effects of aluminum oxide in restructuring iron single crystal surfaces for ammonia synthesis. J. Catal. 1987, 103, 289–301. [Google Scholar] [CrossRef][Green Version]
- Strongin, D.R.; Somorjai, G.A. Ammonia-pretreatment-induced restructuring of iron single-crystal surfaces: Its effects on ammonia synthesis and on coadsorbed aluminum oxide and potassium. J. Catal. 1989, 118, 99–110. [Google Scholar] [CrossRef]
- Arabczyk, W.; Narkiewicz, U.; Kałucki, K. Model of active surface of iron catalyst for ammonia synthesis. Vacuum 1994, 45, 267–269. [Google Scholar] [CrossRef]
- Arabczyk, W.; Narkiewicz, U. Growth of iron oxides on the Fe(111) surface precovered with sulphur and/or potassium. Appl. Surf. Sci. 1997, 108, 379–384. [Google Scholar] [CrossRef]
- Arabczyk, W.; Kałucki, K. New model of deactivation of iron catalysts for ammonia-synthesis. Stud. Surf. Sci. Catal. 1993, 75, 2539–2542. [Google Scholar] [CrossRef]
- Arabczyk, W. Untersuchung der Segregation Nichtmetallischer Elemente und Ihres Einflusses auf die Oxydation der Eisen-(111) Oberflache mit Hilfe Elektronspektrometrischer Methoden; Technische Universität Dresden: Dresden, Germany, 1987. [Google Scholar]
- Arabczyk, W.; Narkiewicz, U.; Moszyński, D. Double-Layer Model of the Fused Iron Catalyst for Ammonia Synthesis. Langmuir 1999, 15, 5785–5789. [Google Scholar] [CrossRef]
- Arabczyk, W.; Jasińska, I.; Lubkowski, K. The surface properties of iron catalyst for ammonia synthesis. React. Kinet. Catal. Lett. 2004, 83, 385–392. [Google Scholar] [CrossRef]
- Lendzion-Bieluń, Z.; Arabczyk, W. Method for determination of the chemical composition of phases of the iron catalyst precursor for ammonia synthesis. Appl. Catal. A 2001, 207, 37–41. [Google Scholar] [CrossRef]
- Arabczyk, W.; Ekiert, E.; Pelka, R. Size-dependent transformation of α-Fe into γ′-Fe4N in nanocrystalline the Fe-NH3-H2 system. J. Phys. Chem. C 2016, 120, 17989–17995. [Google Scholar] [CrossRef]
- Arabczyk, W.; Ekiert, E.; Pelka, R. Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen. Phys. Chem. Chem. Phys. 2016, 18, 25796–25800. [Google Scholar] [CrossRef]
- Arabczyk, W.; Pelka, R.; Wilk, B. Studies of phase transitions occurring in the system of nanocrystalline Fe/NH3/H2. Mater. Chem. Phys. 2019, 237, 121853. [Google Scholar] [CrossRef]
- Moszyńska, I.; Moszyński, D.; Arabczyk, W. Hysteresis in nitriding and reduction in the nanocrystalline iron-ammonia-hydrogen system. Przem. Chem. 2009, 88, 526–529. [Google Scholar]
- Wilk, B.; Arabczyk, W. Investigation of nitriding and reduction processes in a nanocrystalline iron–ammonia–hydrogen system at 350 °C. Phys. Chem. Chem. Phys. 2015, 17, 20185–20193. [Google Scholar] [CrossRef]
- Moszyński, D.; Moszyńska, I.; Arabczyk, W. Iron nitriding and reduction of iron nitrides in nanocrystalline Fe-N system. Mater. Lett. 2012, 78, 32–34. [Google Scholar] [CrossRef]
- Moszyński, D. Nitriding of nanocrystalline iron in the atmospheres with variable nitriding potential. J. Phys. Chem. C 2014, 118, 15440–15447. [Google Scholar] [CrossRef]
- Moszyński, D.; Moszyńska, I.; Arabczyk, W. The transformation of alpha-Fe into gamma’-Fe4N in nanocrystalline Fe-N system. Appl. Phys. Lett. 2013, 103, 253108. [Google Scholar] [CrossRef]
- Wilk, B.; Pelka, R.; Arabczyk, W. Study of the iron catalyst for ammonia synthesis by chemical potential programmed reaction method. J. Phys. Chem. C 2017, 121, 8548–8556. [Google Scholar] [CrossRef]
- Pelka, R.; Arabczyk, W. Studies of the Kinetics of Reaction Between Iron Catalysts and Ammonia—Nitriding of Nanocrystalline Iron with Parallel Catalytic Ammonia Decomposition. Top. Catal. 2009, 52, 1506–1516. [Google Scholar] [CrossRef]
- Pelka, R.; Kiełbasa, K.; Arabczyk, W. The effect of iron nanocrystallites’ size in catalysts for ammonia synthesis on nitriding reaction and catalytic ammonia decomposition. Centr. Eur. J. Chem. 2011, 9, 240–244. [Google Scholar] [CrossRef]
- Arabczyk, W.; Pelka, R.; Jasińska, I.; Lendzion-Bieluń, Z. Reaction model taking into account the catalyst morphology and its active specific surface in the process of catalytic ammonia decomposition. Materials 2021, 14, 7229. [Google Scholar] [CrossRef] [PubMed]
- Pelka, R. A method of determining nanoparticle size distribution in iron ammonia synthesis catalyst by measuring mass changes during the nitriding process. Catal. Today 2017, 286, 118–123. [Google Scholar] [CrossRef]
- Pelka, R.; Arabczyk, W. A new method for determining the nanocrystallite size distribution in systems where chemical reaction between solid and a gas phase occurs. J. Nanomater. 2013, 2013, 645050. [Google Scholar] [CrossRef]
- Rogowski, J. TOF-SIMS study of morphology and chemical composition of wustite-based precursor and iron catalyst for ammonia synthesis. Appl. Surf. Sci. 2019, 469, 82–89. [Google Scholar] [CrossRef]
- Arabczyk, W.; Narkiewicz, U.; Moszyński, D. Influence of potassium/oxygen layer on properties of iron surfaces. Appl. Catal. 1999, 182, 379–384. [Google Scholar] [CrossRef]
- Spencer, M.J.S.; Hung, A.; Snook, I.K.; Yarovsky, I. Density Functional Theory Study of the Relaxation and Energy of Iron Surfaces. Surf. Sci. 2002, 513, 389–398. [Google Scholar] [CrossRef]
- Tyson, W.R.; Miller, W.A. Surface Free Energies of Solid Metals. Estimation from Liquid Surface Tension Measurements. Surf. Sci. 1977, 62, 267–276. [Google Scholar] [CrossRef]
- Lendzion-Bieluń, Z. A comparison of the distribution of promoters in reduced and oxidized form of iron catalyst for ammonia synthesis. Pol. J. Chem. 2007, 81, 433–440. [Google Scholar]
- Jasińska, I.; Lubkowski, K.; Arabczyk, W. The surface properties of iron catalyst for ammonia synthesis. Ann. Pol. Chem. Soc. 2003, 2, 1205–1209. [Google Scholar]
- Arabczyk, W.; Jasińska, I.; Pelka, R. Measurements of the relative number of active sites on iron catalyst for ammonia synthesis by hydrogen desorption. Catal. Today 2011, 169, 97–101. [Google Scholar] [CrossRef]
Temperature (K) | Specific Surface Area (m2/g) | Average Size of Iron Nanocrystallites (nm) |
---|---|---|
773 | 12.9 | 17 |
813 | 8.8 | 23 |
843 | 6.4 | 27 |
933 | 5.9 | 35 |
993 | 3.2 | 43 |
Substance | Enthalpy of Formation, ΔHform (kJ/mol) | Enthalpy of Formation with Respect to One Me-O Bond, ΔH*form (kJ/mol) | Wetting Enthalpy ΔHwet + ΔHFe(MexO)s (kJ/mol) |
---|---|---|---|
K2O | −363 | −182 | −50 |
Fe3O4 | −1118 | −140 | 0 |
Al2O3 | −1676 | −280 | 232 |
CaO | −635 | −317 | 269 |
Temperature | ΔG(Simax) | ΔG(S) | ΔH(Simax) | ΔH(S) | ΔS(Simax) | ΔS(S) |
---|---|---|---|---|---|---|
(K) | (kJ mol–1) | (kJ mol–1 K–1) | ||||
773 | −55 | −28 | 0.7 | 33.4 | 0.072 | 0.078 |
823 | −58 | −30 | ||||
873 | −60 | −33 | ||||
923 | −67 | −37 | ||||
973 | −71 | −45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arabczyk, W.; Pelka, R.; Jasińska, I.; Lendzion-Bieluń, Z. Thermodynamics of Iron Ammonia Synthesis Catalyst Sintering. Crystals 2024, 14, 188. https://doi.org/10.3390/cryst14020188
Arabczyk W, Pelka R, Jasińska I, Lendzion-Bieluń Z. Thermodynamics of Iron Ammonia Synthesis Catalyst Sintering. Crystals. 2024; 14(2):188. https://doi.org/10.3390/cryst14020188
Chicago/Turabian StyleArabczyk, Walerian, Rafał Pelka, Izabella Jasińska, and Zofia Lendzion-Bieluń. 2024. "Thermodynamics of Iron Ammonia Synthesis Catalyst Sintering" Crystals 14, no. 2: 188. https://doi.org/10.3390/cryst14020188
APA StyleArabczyk, W., Pelka, R., Jasińska, I., & Lendzion-Bieluń, Z. (2024). Thermodynamics of Iron Ammonia Synthesis Catalyst Sintering. Crystals, 14(2), 188. https://doi.org/10.3390/cryst14020188