Optimal Doping Concentrations of Nd3+ Ions in CYGA Laser Crystals
Abstract
1. Introduction
2. Theoretical Analysis
3. Results and Discussion
3.1. Spectral Overlap Model
3.2. Experiment Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Semwal, K.; Bhatt, S.C. Study of Nd3+ ion as a dopant in YAG and glass laser. Int. J. Phys. 2013, 1, 15–21. [Google Scholar]
- Reddy, C.M.; Vijaya, N.; Raju, B.D.P. NIR fluorescence studies of neodymium ions doped sodium fluoroborate glasses for 1.06 μm laser applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 115, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, S.A.; Dantas, N.O.; Serqueira, E.O.; Ayta, W.E.F.; Andrade, A.A.; Filadelpho, M.C.; Sampaio, J.A.; Bell, M.J.V.; Pereira-da-Silva, M.A. Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system. J. Lumin. 2011, 131, 850–855. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, B.J.; Tian, B.J.; Hua, R.N.; Sun, J.S.; Cheng, L.H.; Zhong, H.Y.; Li, X.P.; Zhang, J.S.; Zheng, Y.F.; et al. Concentration-dependent luminescence and energy transfer of flower-like Y2 (MoO4)3: Dy3+ phosphor. J. Alloys Compd. 2011, 509, 6096–6101. [Google Scholar]
- Trupke, T.; Shalav, A.; Richards, B.S.; Würfel, P.; Green, M.A. Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 2006, 90, 3327–3338. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, M.; Zhang, P.X.; Yin, H.; Zhu, S.Q.; LI, Z.; Chen, Z.Q. Passively Q-switched Nd: GYAP laser at 1.3 μm with bismuthene nanosheets as a saturable absorber. Infrared Phys. Technol. 2022, 121, 104023. [Google Scholar] [CrossRef]
- Palatnikov, M.N.; Biryukova, I.V.; Sidorov, N.V.; Denisov, A.V.; Kalinnikov, V.T.; Smith, P.G.R.; Shur, V.Y. Growth and concentration dependencies of rare earth doped lithium niobate single crystals. J. Cryst. Growth 2006, 291, 390–397. [Google Scholar] [CrossRef]
- Cerrato, E.; Gionco, C.; Berruti, I.; Sordello, F.; Calza, P.; Paganini, M.C. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment. J. Solid State Chem. 2018, 264, 42–47. [Google Scholar] [CrossRef]
- Ma, F.K.; Zhang, P.X.; Su, L.B.; Yin, H.; Li, Z.; Lv, Q.T.; Chen, Z.Q. The host driven local structures modulation towards broadband photoluminescence in neodymium-doped fluorite crystal. Opt. Mater. 2021, 119, 111322. [Google Scholar]
- Duan, Y.M.; Zhu, H.Y.; Xu, C.W.; Yang, H.; Luo, D.W.; Lin, H.; Zhang, J.; Tang, D.Y. Comparison of the 1319 and 1338 nm dual-wavelength emission of neodymium-doped yttrium aluminum garnet ceramic and crystal lasers. Appl. Phys. Express 2012, 6, 012701. [Google Scholar] [CrossRef]
- Zhang, P.X.; Wang, R.; Huang, X.B.; Li, Z.; Yin, H.; Zhu, S.Q.; Chen, Z.Q.; Hang, Y. Sensitization and deactivation effects to Er3+ at ~2.7 μm mid-infrared emission by Nd3+ ions in Gd0.1Y0.9AlO3 crystal. J. Alloys Compd. 2018, 750, 147–152. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Zhu, S.Q.; Li, Z.; Yin, H.; Zhang, P.X.; Chen, Z.Q.; Fu, S.H.; Zhang, Q.M.; Lv, Q.T. Investigation on 1.0 and 1.3 µm laser performance of Nd3+: GYAP crystal. Opt. Laser Technol. 2019, 119, 105601. [Google Scholar] [CrossRef]
- Wang, Y.H.; Chen, Q.D.; Zhang, P.X.; Liao, J.Y.; Hong, H.; Chen, H.L.; Yin, H.; Hang, Y.; Li, Z.; Chen, Z.Q. Fabrication of Sb2O3 by an improved chemical reaction assisted vertical micro sublimation method and its saturable absorber performance. Opt. Mater. Express 2022, 12, 1337–1346. [Google Scholar] [CrossRef]
- Li, B.Z.; Chen, Q.D.; Zhang, P.X.; Tian, R.F.; Zhang, L.; Sai, Q.L.; Wang, B.; Pan, M.Y.; Liu, Y.C.; Xia, C.T.; et al. β-Ga2O3 Used as a Saturable Sbsorber to Realize Passively Q-Switched Laser Output. Crystals 2021, 11, 1501. [Google Scholar]
- Chen, Y.; Chen, Q.D.; Niu, X.C.; Zheng, W.B.; Zhang, P.X.; Li, Z.; Chen, Z.Q. Growth, spectroscopy properties and laser operation of a novel single crystal fiber: Nd3+-doped CaY0.9Gd0.1AlO4. Infrared Phys. Technol. 2023, 134, 104917. [Google Scholar] [CrossRef]
- Ikesue, A.; Kamata, K.; Yoshida, K. Effects of neodymium concentration on optical characteristics of polycrystalline Nd: YAG laser materials. J. Am. Ceram. Soc. 1996, 79, 1921–1926. [Google Scholar] [CrossRef]
- Denker, B.I.; Osiko, V.V.; Pashinin, P.P.; Prokhorov, A.M. Concentrated neodymium laser glasses. Sov. J. Quantum Electron. 1981, 11, 289. [Google Scholar] [CrossRef]
- Caird, J.A.; Ramponi, A.J.; Staver, P.R. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses. JOSA B 1991, 8, 1391–1403. [Google Scholar] [CrossRef]
- Fernandez, J.; Oleaga, A.; Azkargorta, J.; Iparraguirre, I.; Balda, R.; Voda, M.; Kaminskii, A.A. Nd3+ laser spectral dynamics in CaF2–YF3–NdF3 crystals. Opt. Mater. 1999, 13, 9–16. [Google Scholar] [CrossRef]
- Yu, H.H.; Zhang, H.J.; Wang, Z.P.; Wang, J.Y.; Yu, Y.G.; Shi, Z.B.; Zhang, X.Y.; Jiang, M.H. Continuous-wave and passively Q-switched laser performance with a disordered Nd: CLNGG crystal. Opt. Express 2009, 17, 19015–19020. [Google Scholar]
- Wang, Y.G.; Qu, Z.S.; Liu, J.; Tsang, Y.H. Graphene oxide absorbers for watt-level high-power passive mode-locked Nd: GdVO4 laser operating at 1 μm. J. Light. Technol. 2012, 30, 3259–3262. [Google Scholar] [CrossRef]
- Noom, D.W.E.; Witte, S.; Morgenweg, J.; Altmann, R.K.; Eikema, K.S.E. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd: YAG system. Opt. Lett. 2013, 38, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Kausas, A.; Taira, T. >MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser. Opt. Express 2016, 24, 28748–28760. [Google Scholar]
- Chen, H.L.; Zhang, P.X.; Song, J.W.; Yin, H.; Hang, Y.; Yang, Q.G.; Li, Z.; Chen, Z.Q. Spectral broadening of a mixed Nd: CYGA crystal with tunable laser operation beyond 1100 nm. Opt. Express 2022, 30, 21943–21951. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, Q.; Zhang, P.X.; Zhou, H.G.; Zhu, S.Q.; Zhang, Y.Q.; Li, Z.; Yin, H.; Chen, Z.Q.; Hang, Y. Crystal growth, optical properties and laser performance of new mixed Nd3+ doped Gd0.1Y0.9AlO3 crystal. J. Alloys Compd. 2019, 789, 664–669. [Google Scholar]
- Avanesov, A.G.; Denker, B.I.; Osiko, V.V.; Pirumov, S.S.; Sakun, V.P.; Smirnov, V.A.; Shcherbakov, I.A. Kinetics of nonradiative relaxation from the upper active level of neodymium in a Y3Al5O12 crystal. Sov. J. Quantum Electron. 1982, 12, 744. [Google Scholar] [CrossRef]
- Kaiser, W.; Garrett, C.G.B. Two-photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 1961, 7, 229. [Google Scholar]
- Inokuti, M.; Hirayama, F. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 1965, 43, 1978–1989. [Google Scholar] [CrossRef]
- Artamonova, M.V.; Briskina, C.M.; Burshtein, A.I.; Zusman, L.D.; Skleznev, A.G. Time variation of Nd3+ ion luminescence and an estimation of electron excitation migration along the ions in glass. Sov. Phys. JETP 1972, 35, 457–461. [Google Scholar]
- Tian, C.; Chen, X.; Yu, S.B. Concentration dependence of spectroscopic properties and energy transfer analysis in Nd3+ doped bismuth silicate glasses. Solid State Sci. 2015, 48, 171–176. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Biswas, K.; Mandal, A.K.; Annapurna, K. Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses. Appl. Phys. B 2010, 101, 235–244. [Google Scholar] [CrossRef]
- Privis, Y.S.; Smirnov, V.A.; Shcherbakov, I.A. Determination of the optimal concentrations of active particles in laser media. Sov. J. Quantum Electron. 1983, 13, 868. [Google Scholar] [CrossRef]
- Matta, F.; Reichel, A. Uniform computation of the error function and other related functions. Math. Comput. 1971, 25, 339–344. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.Y.; Li, D.H.; Wei, Z.Y.; Zhang, Z.G.; Eichle, H.J.; Strohmaier, S. Characteristics of Nd: YGG laser operating at 4F3/2–4I9/2. Chin. Phys. Lett. 2008, 25, 3988. [Google Scholar]
- Braud, A.; Girard, S.; Doualan, J.L.; Moncorge, R. Spectroscopy and fluorescence dynamics of (Tm3+, Tb3+) and (Tm3+, Eu3+) doped LiYF4 single crystals for 1.5-μm laser operation. IEEE J. Quantum Electron. 1998, 34, 2246–2255. [Google Scholar] [CrossRef]
- Lupei, V.; Lupei, A.; Georgescu, S.; Ionescu, C. Energy transfer between Nd3+ ions in YAG. Opt. Commun. 1986, 60, 59–63. [Google Scholar] [CrossRef]
- Lupei, A.; Lupei, V.; Georgescu, S.; Yen, W.M. Mechanisms of energy transfer between Nd3+ Ions in YAG. J. Lumin. 1987, 39, 35–43. [Google Scholar] [CrossRef]
- Voron’Ko, Y.K.; Mamedov, T.G.; Osiko, V.V.; Prokhorov, A.M.; Sakun, V.P.; Shcherbakov, I.A. Nature of nonradiative excitation-energy relaxation in condensed media with high activator concentrations. Sov. J. Exp. Theor. Phys. 1976, 44, 251. [Google Scholar]
- Glushkov, N.A. Kinetics of nonstationary migration-accelerated energy transfer in a solid body doped with rare earth and transition-metal ions. Opt. Spectrosc. 2014, 116, 700–705. [Google Scholar] [CrossRef]
- Miniscalco, W.J.; Quimby, R.S. General procedure for the analysis of Er3+ cross sections. Opt. Lett. 1991, 16, 258–260. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, J.J.; Yu, C.L.; Hu, L.L. A method for emission cross section determination of Tm3+ at 2.0 μm emission. J. Appl. Phys. 2010, 108, 103117. [Google Scholar] [CrossRef]
- Tian, F.; Chen, C.; Liu, Y.; Liu, Q.; Ivanov, M.; Wang, Q.Q.; Jiang, N.; Chen, H.H.; Yang, Z.X.; Xie, T.F.; et al. Fabrication of Nd: YAG transparent ceramics from co-precipitated powders by vacuum pre-sintering and HIP post-treatment. Opt. Mater. 2020, 101, 109728. [Google Scholar] [CrossRef]
- Kassab, L.R.P.; Fukumoto, M.E.; Gomes, L. Energy transfer in PbO-Bi2O3-Ga2O3 glasses codoped with Yb3+ and Er3+. JOSA B 2005, 22, 1255–1259. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Tan, J.; Li, Z.; Zhang, P.; Chen, Z. Optimal Doping Concentrations of Nd3+ Ions in CYGA Laser Crystals. Crystals 2024, 14, 168. https://doi.org/10.3390/cryst14020168
Lu S, Tan J, Li Z, Zhang P, Chen Z. Optimal Doping Concentrations of Nd3+ Ions in CYGA Laser Crystals. Crystals. 2024; 14(2):168. https://doi.org/10.3390/cryst14020168
Chicago/Turabian StyleLu, Siliang, Juncheng Tan, Zhen Li, Peixiong Zhang, and Zhenqiang Chen. 2024. "Optimal Doping Concentrations of Nd3+ Ions in CYGA Laser Crystals" Crystals 14, no. 2: 168. https://doi.org/10.3390/cryst14020168
APA StyleLu, S., Tan, J., Li, Z., Zhang, P., & Chen, Z. (2024). Optimal Doping Concentrations of Nd3+ Ions in CYGA Laser Crystals. Crystals, 14(2), 168. https://doi.org/10.3390/cryst14020168