Very-High-Cycle Fatigue Behaviors for Bearing Steel Microstructural Transformation
Abstract
:1. Introduction
2. Materials, Test Methods, and Results
2.1. Test Material and Heat Treatment Method
2.2. UNSM Processing Technology
2.3. Tensile Test and Results
2.4. Hardness Test and Test Results
2.5. Fatigue Test and UNSM Processing Method
3. Research Results and Discussions
3.1. Electron Microscope Observation of Microstructural Transformation Due to Heat Treatment
3.2. Analysis by EBSD
3.3. S-N Curve and Fatigue Characteristics
3.3.1. S-N Curve of BQT Material and UNSM Treatment Effect
3.3.2. S-N Curve and Fatigue Characteristics of New Bearing Steel
3.3.3. Observation of Fatigue Fracture Surfaces of Surface Cracks and Fisheye Cracks
3.3.4. Relationship Between the Depth of Fisheye Crack Occurrence and the Diameter of FGA
3.3.5. Fracture Mechanical Analysis of Inclusions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, J.; Bhattacharjeeb, D.; Mannaa, I. Development of Ultrafine Bainite + Martensite Duplex Microstructure in SAE 52100 Bearing Steel by Prior Cold Deformation. Scr. Mater. 2009, 61, 604–607. [Google Scholar] [CrossRef]
- Nahm, S.H.; Suh, M.S.; Suh, C.M.; Pyun, Y.S. Characteristics of Inclusions of Bearing Steels and Fish-eye Crack Mechanism. Trans. Korean Soc. Mech. Eng. A 2018, 42, 419–427. [Google Scholar] [CrossRef]
- Nahm, S.H.; Suh, M.S.; Suh, C.M.; Pyun, Y.S. A Study on the Very High Cycle Fatigue and Fracture Behavior of Bearing Steel by Ultrasonic Nanocrystal Surface Modification. Trans. Korean Soc. Mech. Eng. A 2018, 42, 513–521. [Google Scholar] [CrossRef]
- Nakasone, Y.; Hara, H. FEM Simulation of Growth of Fish-Eye Cracks in the Very High Cycle Fatigue of a High Strength Steel SUJ2. In Proceedings of the 3rd International Conference on Very High Cycle Fatigue (VHCF-3), Kusatsu, Japan, 16–19 September 2004; pp. 40–47. [Google Scholar]
- Sakai, T.; Sato, Y.; Oguam, N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 765–773. [Google Scholar] [CrossRef]
- Miyamoto, G.; Iwata, N.; Takayama, N.; Furuhara, T. Quantitative Analysis of Variant Selection in Ausformed Lath Martensite. Acta Mater. 2012, 60, 1139–1148. [Google Scholar] [CrossRef]
- Miyamoto, G.; Takayama, N.; Furuhara, T. Accurate Measurement of the Orientation Relationship of Lath Martensite and Bainite by Electron Backscatter Diffraction Analysis. Scrita Mater. 2009, 60, 1113–1116. [Google Scholar] [CrossRef]
- Roland, T.; Retraint, D.; Lu, K.; Lu, J. Fatigue Life Improvement through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment. Scr. Mater. 2006, 54, 1949–1954. [Google Scholar] [CrossRef]
- Dai, K.; Shaw, L. Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation. Int. J. Fatigue 2008, 30, 1398–1402. [Google Scholar] [CrossRef]
- Gill, A.; Telang, A.; Mannava, S.R.; Qian, D.; Pyun, Y.S.; Soyama, H.; Vasudevan, V.K. Comparison of Mechanisms of Advanced Mechanical Surface treatments in Nickel-Based Superalloy. Mater. Sci. Eng. A 2013, 576, 346–355. [Google Scholar] [CrossRef]
- Pyun, Y.S.; Kim, J.H.; Suh, C.M.; Cho, I.S.; Oh, J.Y.; Wang, Q.; Khan, M.K. The Rotary Bending Fatigue and Ultrasonic Fatigue Performance of Ti-6Al-4V ELI and STA Alloys after Ultrasonic Nanocrystal Surface Modification Treatment. In Proceedings of the 6th International Conference on VHCF, Chengdu, China, 5–18 October 2014. [Google Scholar]
- Nahm, S.H.; Shim, H.B.; Baek, U.B.; Suh, C.M. Very High Cycle Fatigue Behaviors and Surface Crack Growth Mechanism of Hydrogen-Embrittled AISI 304 Stainless Steels. Mater. Sci. Appl. 2018, 9, 393–411. [Google Scholar] [CrossRef]
- Luzginova, N.V.; Zhao, L.; Sietsma, J. The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents. Metall. Mater. Trans. A 2008, 39, 513. [Google Scholar] [CrossRef]
- Gu, C.; Liu, W.-Q.; Lian, J.-H.; Bao, Y.-P. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int. J. Miner. Metall. Mater. 2021, 28, 826–834. [Google Scholar] [CrossRef]
- Bomas, H.; Linkewitz, T.; Mayr, P. Application of a weakest-link concept to the fatigue limit of the bearing steel SAE 52100 in a bainitic condition. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 733–742. [Google Scholar]
- Laia, J.; Rydénb, K.; Gabellia, A.; Strandell, I. The fatigue limit of bearing steels—Part I: A pragmatic approach to predict very high cycle fatigue strength. Int. J. Fatigue 2012, 37, 155–168. [Google Scholar] [CrossRef]
- Cerullo, M. Sub-Surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings. Procedia Eng. 2014, 74, 333–338. [Google Scholar] [CrossRef]
- Spriestersbach, D.; Brodyanski, A.; Lösch, J.; Kopnarski, M.; Kerscher, E. Very high cycle fatigue of bearing steels with artificial defects in vacuum. Mater. Sci. Technol. 2016, 32, 1111–1118. [Google Scholar] [CrossRef]
- Mayer, H. Fatigue crack growth and threshold measurements at very high frequencies. Int. Mater. Rev. 2013, 44, 1–34. [Google Scholar] [CrossRef]
- Mayer, H.; Haydn, W.; Schuller, R.; Issler, S.; Furtner, B.; Bacher-Höchst, M. Very high cycle fatigue properties of bainitic high carbon–chromium steel. Int. J. Fatigue 2009, 31, 242–249. [Google Scholar] [CrossRef]
- Darisuren, S.; Park, J.H.; Pyun, Y.S.; Amanov, A. A Study on the Improvement of the Fatigue Life of Bearings by Ultrasonic Nanocrystal Surface Modification Technology. Metals 2019, 9, 1114. [Google Scholar] [CrossRef]
- Suh, C.M.; Nahm, S.H.; Kim, J.H.; Pyun, Y.S. A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy. Trans. Korean Soc. Mech. Eng. A 2016, 40, 637–646. [Google Scholar] [CrossRef]
- Suh, C.M.; Pyun, Y.S.; Suh, M.S. Variation of Rotating Bending Fatigue Characteristics by UNSM on Ti-6Al-4V. J. Ocean Eng. Technol. 2011, 25, 49–55. [Google Scholar] [CrossRef]
- Suh, C.M.; Song, G.H.; Suh, M.S.; Pyun, Y.S. Fatigue and Mechanical Characteristics of Nanostructured Tool Steel by Ultrasonic Cold Forging Technology. Mater. Sci. Eng. A 2007, 443, 101–106. [Google Scholar] [CrossRef]
Specimen | Tensile Strength (MPa) | Yield Stress (0.2%, MPa) | Elongation (%) | Reduction in Area(%) | Hardness (Hv) |
---|---|---|---|---|---|
BAR | 926 | 577 | 17.2 | 40.5 | 345.0 |
BQT | 1993 | 1100 | 1.2 | 2.5 | 700.6 |
BAT | 1302 | 929 | 17.0 | 48.1 | 340.1 |
Cond. | BAR | BQT | BAT | ||||
---|---|---|---|---|---|---|---|
5N | 1st | 342.9 | 349.3 | 700.1 | 689.7 | 335.9 | 344.2 |
2nd | 345.7 | 343.3 | 708.7 | 687.5 | 336.5 | 346.8 | |
10N | 3rd | 342.0 | 346.8 | 712.9 | 704.9 | 339.3 | 337.6 |
Average | 1st | 346.1 | 694.9 | 340.1 | |||
2nd | 344.5 | 698.1 | 341.7 | ||||
3rd | 344.4 | 708.9 | 338.5 | ||||
Mean | 345.0 | 700.6 | 340.1 | ||||
Rockwell C-scale | 44.0 (Hv 434) | 60.5 (Hv 708) | 39.5 (Hv 387) | ||||
S.D | 0.36 | 1.18 | 5.35 |
Specimen | BAR | BQT | BAT | UBAR | UBQT | UBAT |
---|---|---|---|---|---|---|
Fatigue limit, MPa | 500 | 1200 | 800 | 720 | 1600 | 1000 |
% | - | 140 | 60 | 44 | 220 | 100 |
% | - | 122 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahm, S.-H.; Jeon, S.-K.; Kim, D.-K.; Suh, M.-S.; Suh, C.-M. Very-High-Cycle Fatigue Behaviors for Bearing Steel Microstructural Transformation. Crystals 2024, 14, 1040. https://doi.org/10.3390/cryst14121040
Nahm S-H, Jeon S-K, Kim D-K, Suh M-S, Suh C-M. Very-High-Cycle Fatigue Behaviors for Bearing Steel Microstructural Transformation. Crystals. 2024; 14(12):1040. https://doi.org/10.3390/cryst14121040
Chicago/Turabian StyleNahm, Seung-Hoon, Sang-Koo Jeon, Dong-Kyun Kim, Min-Soo Suh, and Chang-Min Suh. 2024. "Very-High-Cycle Fatigue Behaviors for Bearing Steel Microstructural Transformation" Crystals 14, no. 12: 1040. https://doi.org/10.3390/cryst14121040
APA StyleNahm, S. -H., Jeon, S. -K., Kim, D. -K., Suh, M. -S., & Suh, C. -M. (2024). Very-High-Cycle Fatigue Behaviors for Bearing Steel Microstructural Transformation. Crystals, 14(12), 1040. https://doi.org/10.3390/cryst14121040