Effect of Si Gradient Pattern on the Microstructure and Properties of Laminated Electrical Steel Composites Prepared by Hot-Press Sintering
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Processing
2.2. Characterization of Microstructure and Properties
3. Results and Discussion
3.1. Microstructures and Properties of the Initial Materials and Hot-Pressed Bands
3.2. Microstructure Evolution During Rolling and Annealing of the Hot-Pressed Si-Gradient Steel
3.3. Magnetic and Mechanical Properties of the Annealed Si-Gradient Electrical Steel
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Zhu, Y.; Yue, E.; He, J.; Sun, L. Microstructure and texture evolution of ultra-thin high grade non-oriented silicon steel used in new energy vehicle. Mater. Res. Express 2022, 9, 096515. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, B.; Zhou, Y.; Wu, Y.; Zhu, H. Evaluation of pitting corrosion in duplex stainless steel Fe20Cr9Ni for nuclear power application. Acta Mater. 2020, 197, 172–183. [Google Scholar] [CrossRef]
- Tian, W.P.; Jin, Z.Q.; Wang, X.R.; Xie, G.M. Wire-arc directed energy deposition super martensitic stainless steel with excellent strength and plasticity. J. Manuf. Process. 2023, 103, 11–22. [Google Scholar] [CrossRef]
- Guo, F.; Niu, Y.; Fu, B.; Qiao, J.; Qiu, S. Influence mechanisms of cold rolling reduction rate on microstructure, texture and magnetic properties of non-oriented silicon steel. Crystals 2024, 14, 853. [Google Scholar] [CrossRef]
- Jiao, H.; Xu, Y.; Zhao, L.; Misra, R.D.K.; Tang, Y.; Liu, D.; Hu, Y.; Zhao, M.J.; Shen, M. Texture evolution in twin-roll strip cast non-oriented electrical steel with strong Cube and Goss texture. Acta Mater. 2020, 199, 311–325. [Google Scholar] [CrossRef]
- Du, Y.; O’ Malley, R.; Buchely, M.F. Review of magnetic properties and texture evolution in non-oriented electrical steels. Appl. Sci. 2023, 13, 6097. [Google Scholar] [CrossRef]
- Hawezy, D. The influence of silicon content on physical properties of non-oriented silicon steel. Mater. Sci. Technol. 2017, 33, 1560–1569. [Google Scholar] [CrossRef]
- Yu, J.; Feng, H.; Jiang, S.; Wang, L.; Lin, P.; Sun, D.; Yan, B.; Zhang, Y. Revealing mechanisms for significantly enhancing plasticity of high silicon steel by combining experiment with first principle. Mater. Charact. 2023, 204, 113223. [Google Scholar] [CrossRef]
- Ouyang, G.; Chen, X.; Liang, Y.; Macziewski, C.; Cui, J. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 2019, 481, 234–250. [Google Scholar] [CrossRef]
- Peng, M.; Zhong, Y.; Zheng, T.; Lan, L.; Zhou, J.; Ren, Z. 6.5 wt% Si high silicon steel sheets prepared by composite electrodeposition in magnetic field. J. Mater. Sci. Technol. 2018, 34, 2492–2497. [Google Scholar] [CrossRef]
- Li, C.; Yang, C.; Cai, G.; Wang, Q. Ordered phases and microhardness of Fe-6.5%Si steel sheet after hot rolling and annealing. Mater. Sci. Eng. A 2016, 650, 84–92. [Google Scholar] [CrossRef]
- Zhang, D.; Song, Y.; Wu, Z.; Yang, X.; Wang, C.; Su, Y.; Sun, H.L.; Ma, C.; Wang, B. Texture genetics and magnetic properties of Fe-6.5% Si materials modified with Cu. J. Mater. Sci. 2024, 59, 16735–16748. [Google Scholar] [CrossRef]
- Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J. Commercial scale production of Fe-6.5 wt.% Si sheet and its magnetic properties. J. Appl. Phys. 1988, 64, 5367–5369. [Google Scholar] [CrossRef]
- Ros-Yanez, T.; De Wulf, M.; Houbaert, Y. Influence of the Si and Al gradient on the magnetic properties of high-Si electrical steel produced by hot dipping and diffusion annealing. J. Magn. Magn. Mater. 2004, 272–276, e521–e522. [Google Scholar] [CrossRef]
- Tian, G.K.; Bi, X.F. Fabrication and magnetic properties of Fe-6.5% Si alloys by magnetron sputtering method. J. Alloys Comp. 2010, 502, 1–4. [Google Scholar] [CrossRef]
- Yoshizaki, S.; Zaizen, Y.; Okubo, T. Characterization of a small motor for drones using new Si-gradient steel (JNRFTM). J. Magn. Magn. Mater. 2024, 593, 171751. [Google Scholar] [CrossRef]
- Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5% Si steel sheet. AIP Adv. 2018, 8, 056122. [Google Scholar] [CrossRef]
- Yu, H.; Wen, Y.; Bi, X. Magnetic and mechanical properties of the gradient FeSi alloys fabricated by magnetron sputtering. J. Alloys Comp. 2015, 634, 83–86. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Xian, C.; Jia, J.X.; Liao, X.W.; Kong, H.; Wang, X.S.; Xu, K. Silica coating of Fe-6.5 wt%Si particles using fluidized bed CVD: Effect of precursor concentration on core-shell structure. J. Phys. Chem. Solids 2020, 146, 109626. [Google Scholar] [CrossRef]
- Fang, F.; Che, S.; Wang, F.; Zhao, Y.; Zhang, Y.; Wang, W.; Cao, G.; Yuan, G.; Misra, R.D.K.; Wang, G. Microstructure evolution and strengthening mechanism in thin-gauge non-oriented silicon steel with high strength. J. Magn. Magn. Mater. 2022, 563, 169791. [Google Scholar] [CrossRef]
- Li, H.Z.; Liu, H.T.; Liu, Y.; Liu, Z.Y.; Cao, G.M.; Luo, Z.H.; Zhang, F.Q.; Chen, S.L.; Lyu, L.; Wang, G.D. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5 wt% Si electrical steel. J. Magn. Magn. Mater. 2014, 370, 6–12. [Google Scholar] [CrossRef]
- Jiao, H.; Wu, W.; Hou, Z.; Xie, X.; Tang, Y.; Misra, R.D.K.; Liu, D.; Hu, Y.; Zhao, L. Ultrastrong {100} texture in twin-roll strip cast non-oriented electrical steel through two-step annealing. Scr. Mater. 2024, 243, 115998. [Google Scholar] [CrossRef]
- Zhao, J.; Zaiser, M.; Lu, X.; Zhang, B.; Huang, C.; Kang, G.; Zhang, X. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities. Int. J. Plast. 2021, 145, 103063. [Google Scholar] [CrossRef]
- Yuan, W.J.; Li, J.G.; Shen, Q.; Zhang, L.M. A study on magnetic properties of high Si steel obtained through powder rolling processing. J. Magn. Magn. Mater. 2008, 320, 76–80. [Google Scholar] [CrossRef]
- Sidor, J.J.; Verbeken, K.; Gomes, E. Through process texture evolution and magnetic properties of high Si non-oriented electrical steels. Mater. Charact. 2012, 71, 49–57. [Google Scholar] [CrossRef]
- Hou, D.; Fang, F.; Wang, Y.; Zhang, Y.; Zhang, X.; Misra, R.D.K.; Yuan, G. Nanoprecipitation behavior and resultant mechanical and magnetic properties in Fe-Si-Ni-Al-Mn high strength non-oriented silicon steel. Mater. Sci. Eng. A 2021, 819, 141529. [Google Scholar] [CrossRef]
- Jiao, H.; Xie, X.; Tang, Y.; Hu, Y.; Liu, D.; Zhao, L. Improved texture and magnetic properties in thingauge strip-cast non-oriented electrical steel through matching design of hot-cold rolling. J. Mater. Res. Technol. 2023, 24, 6411–6424. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, C.; Sha, X.; Xiao, L.; Ma, X.; Höppel, H.W.; Göken, M.; Wu, X.; Ameyama, K.; Han, X. In-situ observation of dislocation dynamics near heterostructured interfaces. Mater. Res. Lett. 2019, 7, 376–382. [Google Scholar] [CrossRef]
- Liang, F.; Zhang, B.; Yong, Y.; Luo, X.M.; Zhang, G.P. Enhanced strain delocalization through formation of dispersive micro shear bands in laminated Ni. Int. J. Plast. 2020, 132, 102745. [Google Scholar] [CrossRef]
Material | B50 (T) | P10/100 (W/kg) | P10/400 (W/kg) | P10/1000 (W/kg) |
---|---|---|---|---|
High-silicon steel | 1.66 | 1.09 | 6.24 | 21.66 |
Medium-silicon steel | 1.72 | 2.30 | 16.52 | 75.53 |
Low-silicon steel | 1.77 | 3.71 | 33.78 | 172.21 |
Sample | σ0.2/MPa | σb/MPa | Elongation/% |
---|---|---|---|
PO-G | 365.4 | 501.7 | 14.6 |
CO-G | 268.7 | 373.2 | 9.8 |
CR-G | 315.7 | 457.3 | 18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, K.; Xu, Q.; Jiao, H.; Hu, Y. Effect of Si Gradient Pattern on the Microstructure and Properties of Laminated Electrical Steel Composites Prepared by Hot-Press Sintering. Crystals 2024, 14, 1023. https://doi.org/10.3390/cryst14121023
Gao K, Xu Q, Jiao H, Hu Y. Effect of Si Gradient Pattern on the Microstructure and Properties of Laminated Electrical Steel Composites Prepared by Hot-Press Sintering. Crystals. 2024; 14(12):1023. https://doi.org/10.3390/cryst14121023
Chicago/Turabian StyleGao, Ke, Qiang Xu, Haitao Jiao, and Yong Hu. 2024. "Effect of Si Gradient Pattern on the Microstructure and Properties of Laminated Electrical Steel Composites Prepared by Hot-Press Sintering" Crystals 14, no. 12: 1023. https://doi.org/10.3390/cryst14121023
APA StyleGao, K., Xu, Q., Jiao, H., & Hu, Y. (2024). Effect of Si Gradient Pattern on the Microstructure and Properties of Laminated Electrical Steel Composites Prepared by Hot-Press Sintering. Crystals, 14(12), 1023. https://doi.org/10.3390/cryst14121023