Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Devices
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Fernández, I.; Valli, D.; Wang, C.; Samanta, S.; Okamoto, T.; Huang, Y.; Sun, K.; Liu, Y.; Chirvony, V.S.; Patra, A.; et al. Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective. Adv. Funct. Mater. 2024, 34, 2307896. [Google Scholar] [CrossRef]
- Gallop, N.P.; Maslennikov, D.; Mondal, N.; Goetz, K.P.; Dai, Z.; Schankler, A.M.; Sung, W.; Nihonyanagi, S.; Tahara, T.; Bodnarchuk, M.I.; et al. Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nat. Mater. 2023, 23, 88. [Google Scholar] [CrossRef] [PubMed]
- Bechir, M.B.; Alresheedi, F. Electrical and optical investigations lead-free Cesium Bismuth iodide single crystal. Opt. Mater. 2024, 147, 114621. [Google Scholar] [CrossRef]
- Bechir, M.B.; Znaidia, S. Understanding the polaron behavior in Cs2CuSbCl6 halide double perovskite. Phys. Chem. Chem. Phys. 2023, 25, 19684. [Google Scholar] [CrossRef]
- Niu, G.; Jiang, J.; Wang, X.; Che, L.; Sui, L.; Wu, G.; Yuan, K.; Yang, X. Time-Resolved Dynamics of Metal Halide Perovskite under High Pressure: Recent Progress and Challenges. J. Phys. Chem. Lett. 2024, 15, 1623. [Google Scholar] [CrossRef]
- Bechir, M.B.; Alresheedi, F. Interpretation of dielectric behavior and polaron hopping in lead-free antimony-based double perovskite. RSC Adv. 2023, 13, 34703. [Google Scholar] [CrossRef]
- Hieulle, J.; Krishna, A.; Boziki, A.; Audinot, J.; Farooq, M.; Machado, J.F.; Mladenović, M.; Phirke, H.; Singh, A.; Wirtz, T.; et al. Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites. Energy Environ. Sci. 2024, 17, 284. [Google Scholar] [CrossRef]
- Emmanuel, M.; Hao, H.; Liu, H.; Jan, A.; Alresheedi, F. Significantly enhanced energy storage density of NNT ceramics using aliovalent Dy3+ dopant. ACS Sustain. Chem. Eng. 2021, 9, 5849–5859. [Google Scholar] [CrossRef]
- Liu, C.; Huang, W.; Liu, R. Stable glass-protected CsPbX3 (X = Cl, Br, and I) perovskite quantum dot and their applications in backlight LED. Prog. Mater. Sci. 2024, 143, 101243. [Google Scholar] [CrossRef]
- Alresheedi, F.; Hcini, S.; Bouazizi, M.L.; Boudard, M.; Dhahri, A. Synthesis and study of impendence spectroscopy properties of La0.6Ca0.2Na0.2MnO3 manganite perovskite prepared using sol–gel method. J. Mater. Sci. Mater. Electron. 2020, 31, 8248–8257. [Google Scholar] [CrossRef]
- Wang, H.; Du, Z.; Jiang, X.; Cao, S.; Zou, B.S.; Zheng, J.; Zhao, J. Ultrastable Photodetectors Based on Blue CsPbBr3 Perovskite Nanoplatelets via a Surface Engineering Strategy. ACS Appl. Mater. Interfaces 2024, 16, 11694. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; He, C.; Yang, X.; Lu, X.; Liu, X.; Ren, S.; Yi, S.; Chen, L.; Wu, H.; Zhang, G.; et al. Emerging New-Generation Detecting and Sensing of Metal Halide Perovskites. Adv. Electron. Mater. 2022, 8, 2101204. [Google Scholar] [CrossRef]
- Manan, A.; Rehman, M.U.; Faisal, S.; Ullah, A.; Ghazi, Z.A.; Khan, M.A.; Ahmad, A.S.; Alresheedi, F.; Khan, M.A. Simultaneously achievement of high recoverable energy density and efficiency in sodium niobate-based ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 22208–22216. [Google Scholar] [CrossRef]
- Alresheedi, F. Structure and spectroscopic ellipsometry studies of nanocrystalline Dy2O3 thin films deposited on Al2O3 wafers by electron beam evaporation technique. J. Mater. Res. Technol. 2021, 12, 2104–2113. [Google Scholar] [CrossRef]
- Li, H.; Yu, H.; Wu, D.; Sun, X.; Pan, L. Recent advances in bioinspired vision sensor arrays based on advanced optoelectronic materials. APL Mater. 2023, 11, 080601. [Google Scholar] [CrossRef]
- Alresheedi, F. Superior resistive switching performance in SnO2 nanoparticles embedded TiO2 nanorods-based thin films. Ceram. Int. 2023, 49, 19505–19512. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, D.; Costa, R.D. Recent progress on synthesis, characterization, and applications of metal halide perovskites@ metal oxide. Adv. Funct. Mater. 2021, 31, 2104634. [Google Scholar] [CrossRef]
- Zhumekenov, A.A.; Burlakov, V.M.; Saidaminov, M.I.; Alofi, A.S.; Haque, A.; Türedi, B.; Davaasuren, B.; Dursun, İ.; Cho, N.; El-Zohry, A.M.; et al. The role of surface tension in the crystallization of metal halide perovskites. ACS Energy Lett. 2017, 2, 1782. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Yang, Z.; Yang, D.; Ren, X.; Xu, H.; Yang, Z.; Liu, S. 20-mm-Large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829. [Google Scholar] [CrossRef]
- Bechir, M.B.; Alresheedi, F. Growth methods’ effect on the physical characteristics of CsPbBr3 single crystal. Phys. Chem. Chem. Phys. 2024, 26, 1274. [Google Scholar] [CrossRef]
- Li, W.; Rao, H.; Chen, B.; Wang, X.; Kuang, D. A formamidinium–methylammonium lead iodide perovskite single crystal exhibiting exceptional optoelectronic properties and long-term stability. J. Mater. Chem. A Mater. Energy Sustain. 2017, 5, 19431. [Google Scholar] [CrossRef]
- Zhao, Y.; Tan, H.; Yuan, H.; Yang, Z.; Fan, J.; Kim, J.; Voznyy, O.; Gong, X.; Quan, L.N.; Tan, C.; et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 2018, 9, 1607. [Google Scholar] [CrossRef]
- Nayak, P.K.; Moore, D.T.; Wenger, B.; Nayak, S.; Haghighirad, A.A.; Fineberg, A.; Noel, N.K.; Reid, O.G.; Rumbles, G.; Kukura, P.; et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 2016, 7, 13303. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, X.; Yang, Z.; Ke, W.; Feng, J.; Ren, X.; Zhao, K.; Liu, M.; Kanatzidis, M.G.; et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Sci. Adv. 2021, 7, eabc8844. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Fang, Y.; Zhou, Y.; Ni, Z.; Xiao, X.; Chen, S.; Huang, J. Ligand assisted growth of perovskite single crystals with low defect density. Nat. Commun. 2021, 12, 1686. [Google Scholar] [CrossRef]
- Wang, F.; Ge, C.; Duan, D.; Lin, H.; Li, L.; Naumov, P.; Hu, H. Recent progress in ionic liquids for stability engineering of perovskite solar cells. Small Struct. 2022, 3, 2200048. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Li, N.; Hu, M.; Raga, S.R.; Jiang, Y.; Wang, C.; Zhang, X.; Lira-Cantú, M.; Huang, F.; et al. Ionic liquid stabilized perovskite solar modules with power conversion efficiency exceeding 20%. Adv. Funct. Mater. 2022, 19, 2204396. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhao, K.; Yang, Z.; Feng, J.; Zhang, X.; Wang, K.; Meng, L.; Ye, H.; Liu, M.; et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 2018, 30, 1707314. [Google Scholar] [CrossRef]
- Zia, W.; Aranda, C.; Pospı, J.; Rai, M.; Momblona, C.; Gorji, S.; Muñoz-Matutano, G.; Saliba, M. Impact of Low-Temperature Seed-Assisted Growth on the Structural and Optoelectronic Properties of MAPbBr3 Single Crystals. Chem. Mater. 2023, 35, 5458. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yang, Z.; Feng, J.; Xu, Z.; Li, Q.; Hu, M.; Ye, H.; Zhang, X.; Liu, M.; et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today 2019, 22, 67. [Google Scholar] [CrossRef]
- Cho, Y.; Jung, H.Y.; Kim, Y.S.; Kim, Y.; Park, J.; Yoon, S.; Lee, Y.; Cheon, M.; Jeong, S.Y.; Jo, W. High speed growth of MAPbBr3 single crystals via low-temperature inverting solubility: Enhancement of mobility and trap density for photodetector applications. Nanoscale 2021, 13, 8275. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, T.; Fadaei-Tirani, F.; Scopelliti, R.; Nazeeruddin, M.K.; Zhu, D.; Dyson, P.J.; Fei, Z. The chemistry of the passivation mechanism of perovskite films with ionic liquids. Inorg. Chem. 2022, 61, 5010. [Google Scholar] [CrossRef]
- Amari, S.; Verilhac, J.; D’Aillon, E.G.; Ibanez, A.; Zaccaro, J. Optimization of the growth conditions for high quality CH3NH3PbBr3 hybrid perovskite single crystals. Cryst. Growth Des. 2020, 20, 1665. [Google Scholar] [CrossRef]
- Mahapatra, A.; Prochowicz, D.; Kruszyńska, J.; Satapathi, S.; Akın, S.; Kumari, H.; Kumar, P.; Fazel, Z.; Tavakoli, M.M.; Yadav, P. Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb (BrxI1−x)3 photodetector. J. Mater. Chem. C 2021, 9, 15189. [Google Scholar] [CrossRef]
- Kalam, A.; Runjhun, R.; Mahapatra, A.; Tavakoli, M.M.; Trivedi, S.; Dastjerdi, H.T.; Kumar, P.; Lewiński, J.; Pandey, M.K.; Prochowicz, D.; et al. Interpretation of resistance, capacitance, defect density, and activation energy levels in single-crystalline MAPbI3. J. Phys. Chem. C 2020, 124, 3496. [Google Scholar] [CrossRef]
- Murali, B.; Yengel, E.; Yang, C.; Peng, W.; Alarousu, E.; Bakr, O.M.; Mohammed, O.F. The surface of hybrid perovskite crystals: A boon or bane. ACS Energy Lett. 2017, 2, 846. [Google Scholar] [CrossRef]
- Meloni, S.; Moehl, T.; Tress, W.; Franckevic, M.; Saliba, M.; Lee, Y.H.; Gao, P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Rothlisberger, U.; et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 2016, 7, 10334. [Google Scholar] [CrossRef]
- Mahapatra, A.; Anilkumar, V.; Nawrocki, J.; Pandey, S.V.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Transient Photocurrent Response in a Perovskite Single Crystal-Based Photodetector: A Case Study on the Role of Electrode Spacing and Bias. Adv. Electron. Mater. 2023, 9, 2300226. [Google Scholar] [CrossRef]
- Mahapatra, A.; Anilkumar, V.; Chavan, R.D.; Yadav, P.; Prochowicz, D. Understanding the origin of light intensity and temperature dependence of photodetection properties in a MAPbBr3 single-crystal-based photoconductor. ACS Photonics 2023, 10, 1424. [Google Scholar] [CrossRef]
- Gavranovic, S.; Pospisil, J.; Zmeskal, O.; Novak, V.; Vanysek, P.; Castkova, K.; Cihlar, J.; Weiter, M. Electrode spacing as a determinant of the output performance of planar-type photodetectors based on methylammonium lead bromide perovskite single crystals. ACS Appl. Mater. Interfaces 2022, 14, 20159. [Google Scholar] [CrossRef]
Procedures | Nucleation Duration | Temperature | Single Crystal Type/ Growth Duration |
---|---|---|---|
Reference | 0.5 h | 85 °C | Large/5 h |
With BMIB (1 mol%) | 4 h | 65 °C | Small/24 h |
With BMIB (3 mol%) | 5 h | 65 °C | Small/24 h |
With BMIB (6 mol%) | 1.5 h | 65 °C | Large/12 h |
With BMIB (10 mol%) | N/A | 65 °C | NA/12 h |
Procedures | Nucleation Duration | Single Crystal Weight (6 h) | Mean Rate of Increase |
---|---|---|---|
Reference | 0.5 h | 402 mg | 0.96 mg/min |
With BMIB (6 mol%) | 1 h | 347 mg | 0.71 mg/min |
FWHM (°) | Ls (%) | |||
---|---|---|---|---|
Miller Indices (hkl) | With BMIB | Reference | With BMIB | Reference |
(020) | 0.054 | 0.063 | 0.074 | 0.120 |
(101) | 0.041 | 0.048 | 0.047 | 0.095 |
(040) | 0.082 | 0.096 | 0.108 | 0.179 |
(202) | 0.089 | 0.103 | 0.132 | 0.184 |
(060) | 0.034 | 0.042 | 0.019 | 0.041 |
(303) | 0.019 | 0.033 | 0.018 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alresheedi, F. Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals 2024, 14, 956. https://doi.org/10.3390/cryst14110956
Alresheedi F. Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals. 2024; 14(11):956. https://doi.org/10.3390/cryst14110956
Chicago/Turabian StyleAlresheedi, Faisal. 2024. "Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals" Crystals 14, no. 11: 956. https://doi.org/10.3390/cryst14110956
APA StyleAlresheedi, F. (2024). Influence of Ionic Liquids on the Functionality of Optoelectronic Devices Employing CsPbBr3 Single Crystals. Crystals, 14(11), 956. https://doi.org/10.3390/cryst14110956