Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials
Abstract
1. Introduction
2. Experimental Section
2.1. Starting Materials
2.2. Synthesis of Al2O3–RGO Nanoparticles
2.3. Sintering of Ceramic Materials
2.4. Mechanical Properties
2.5. Microstructural Characterization
3. Results
3.1. Characterization of GO and Al2O3–RGO Nanoparticles
3.2. XRD and Raman Spectroscopy of the As-Prepared Ceramic Materials
3.3. Microstructure of the As-Prepared Ceramic Materials
3.4. Interface Characteristics of the As-Prepared Ceramic Materials
3.5. Mechanical Characteristics of the As-Prepared Ceramic Materials
4. Strengthening and Toughening Mechanism
4.1. Dispersion Analysis of RGO
4.2. Load Transfer Analysis
4.3. Grain Refinement Analysis
4.4. Toughening Mechanism
4.5. Fracture Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; He, R.; Ding, G.; Bai, X.; Fang, D. Effects of fine grains and sintering additives on stereolithography additive manufactured Al2O3 ceramic. Ceram Int. 2021, 47, 2303–2310. [Google Scholar] [CrossRef]
- Kim, W.; Oh, H.S.; Shon, I.J. The effect of graphene reinforcement on the mechanical properties of Al2O3 ceramics rapidly sintered by high-frequency induction heating. Int. J. Refract. Met. Hard Mater. 2015, 48, 376–381. [Google Scholar] [CrossRef]
- Zou, Y.; Li, C.H.; Liu, J.A.; Wu, J.M.; Hu, L.; Gui, R.F.; Shi, Y.S. Towards fabrication of high-performance Al2O3 ceramics by indirect selective laser sintering based on particle packing optimization. Ceram. Int. 2019, 45, 12654–12662. [Google Scholar] [CrossRef]
- Gutiérrez-González, C.F.; Suárez, M.; Pozhidaev, S.; Rivera, S.; Peretyagin, P.; Solís, W.; Diaz, L.A.; Fernandez, A.; Torrecillas, R. Effect of TiC addition on the mechanical behaviour of Al2O3-SiC whiskers materials obtained by SPS. J. Eur. Ceram. Soc. 2016, 36, 2149–2152. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanomaterials. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, C.; Zou, B.; Liu, H.; Zhu, H.; Wang, J. Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material. Mater. Sci. Eng. A 2013, 577, 9–15. [Google Scholar] [CrossRef]
- Taha, M.A.; Nassar, A.H.; Zawrah, M.F. Improvement of wetability, sinterability, mechanical and electrical properties of Al2O3-Ni nanomaterials prepared by mechanical alloying. Ceram. Int. 2017, 43, 3576–3582. [Google Scholar] [CrossRef]
- Lin, J.; Huang, Y.; Zhang, H. Damage resistance, R-curve behavior and toughening mechanisms of ZrB2-based materials with SiC whiskers and ZrO2 fibers. Ceram. Int. 2015, 41, 2690–2698. [Google Scholar] [CrossRef]
- Guo, G.; Fan, Y.; Zhang, J.F.; Hagan, J.L.; Xu, X. Novel dental materials reinforced with zirconia–silica ceramic nanofibers. Dent. Mater. 2012, 28, 360–368. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Hong, C.; Qiu, Y.; Zhang, J.; Han, J.; Hu, P. Electrostatic assembly preparation of high-toughness zirconium diboride-based ceramic materials with enhanced thermal shock resistance performance. ACS Appl. Mater. Interfaces 2016, 8, 11675–11681. [Google Scholar] [CrossRef]
- Li, D.; Yang, Z.; Jia, D.; Wu, D.; Zhu, Q.; Liang, B.; Wang, S.; Zhou, Y. Microstructure, oxidation and thermal shock resistance of graphene reinforced SiBCN ceramics. Ceram. Int. 2016, 42, 4429–4444. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.Z.; Wan, Y.J.; Gong, L.X.; Yan, D.; Tang, L.C.; Wu, L.B.; Jiang, J.X.; Lai, G.Q. Toward effective and tunable interphases in graphene oxide/epoxy materials by grafting different chain lengths of polyetheramine onto graphene oxide. J. Mater. Chem. A 2014, 2, 15058–15069. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, X.; Shi, J.; Luo, Y.; Tang, Y.; Wu, Q.; Luo, Z. Research on the interface properties and strengthening-toughening mechanism of nanocarbon-toughened ceramic matrix materials. Nanotechnol. Rev. 2020, 9, 190–208. [Google Scholar] [CrossRef]
- Wazalwar, R.; Tripathi, N.; Raichur, A.M. Mechanical and curing behavior of epoxy materials reinforced with polystyrene-graphene oxide (PS-GO) core-shell particles. Part C Open Access 2021, 5, 100128. [Google Scholar] [CrossRef]
- Boostani, A.F.; Tahamtan, S.; Jiang, Z.; Wei, D.; Yazdani, S.; Khosroshahi, R.A.; Mousavian, R.T.; Xu, J.; Zhang, X.; Gong, D. Enhanced tensile properties of aluminium matrix materials reinforced with graphene encapsulated SiC nanoparticles. Compos. Part A Appl. Sci. Manuf. 2015, 68, 155–163. [Google Scholar] [CrossRef]
- Nazarian-Samani, M.; Kim, H.K.; Park, S.H.; Youn, H.C.; Mhamane, D.; Lee, S.W.; Kim, M.-S.; Jeong, J.-H.; Haghighat-Shishavan, S.; Roh, K.-C.; et al. Three-dimensional graphene-based spheres and crumpled balls: Micro-and nano-structures, synthesis strategies, properties and applications. RSC Adv. 2016, 6, 50941–50967. [Google Scholar] [CrossRef]
- Nieto, A.; Bisht, A.; Lahiri, D.; Zhang, C.; Agarwal, A. Graphene reinforced metal and ceramic matrix materials: A review. Int. Mater. Rev. 2017, 62, 241–302. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, P.; Li, G.; Lu, D.D.; Sun, R.; Wong, C. Core-shell SiO2@RGO hybrids for epoxy materials with low percolation threshold and enhanced thermo-mechanical properties. J. Mater. Chem. A 2014, 2, 18246–18255. [Google Scholar] [CrossRef]
- Che, Y.; Sun, Z.; Zhan, R.; Wang, S.; Zhou, S.; Huang, J. Effects of graphene oxide sheets-zirconia spheres nanohybrids on mechanical, thermal and tribological performances of epoxy materials. Ceram. Int. 2018, 44, 18067–18077. [Google Scholar] [CrossRef]
- Doan, V.C.; Vu, M.C.; Islam, M.A.; Kim, S.R. Poly (methyl methacrylate)-functionalized reduced graphene oxide-based core-shell structured beads for thermally conductive epoxy materials. J. Appl. Polym. Sci. 2019, 136, 47377. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, P.; Xie, H.; Yu, W. Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Compos. Sci. Technol. 2016, 125, 17–21. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Z.; Zhang, J.; Xiao, G.; Yi, M.; Zhang, W.; Xu, C. Preparation and mechanical properties of Si3N4 nanomaterials reinforced by Si3N4@rGO particles. J. Am. Ceram. Soc. 2019, 102, 6991–7002. [Google Scholar] [CrossRef]
- Ma, M.; Wang, H.; Xiong, L.; Huang, S.; Li, X.; Du, X. Self-assembled homogeneous SiOC@C/graphene with three-dimensional lamellar structure enabling improved capacity and rate performances for lithium ion storage. Carbon 2022, 186, 273–281. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, Y.; Xin, H.; Chen, J.; Li, Y.; Xu, C. Nano/microstructures and mechanical properties of Al2O3-TiC ceramic materials reinforced with Al2O3@RGO nanohybrids. Ceram. Int. 2022, 48, 27536–27549. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Ceram. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Guerrero-Contreras, J.; Caballero-Briones, F. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 2015, 153, 209–220. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, G.; Li, Y. Study on graphene oxide reinforced magnesium phosphate cement materials. Constr. Build. Mater. 2022, 359, 129523. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Yan, W.; Shu, P.; Mei, J. RGO supported bimetallic MOFs-derived Co/MnO/porous carbon composite toward broadband electromagnetic wave absorption. Carbon 2023, 205, 552–561. [Google Scholar]
- Verma, S.; Pandey, V.K.; Verma, B. Facile synthesis of graphene oxide-polyaniline-copper cobaltite (GO/PANI/CuCo2O4) hybrid nanocomposite for supercapacitor applications. Synth Met. 2022, 286, 117036. [Google Scholar] [CrossRef]
- Ye, D.M.; Li, G.Z.; Wang, G.G.; Lin, Z.Q.; Zhou, H.L.; Han, M.; Liu, Y.L.; Han, J.C. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability. Appl. Surf. Sci. 2019, 467, 158–167. [Google Scholar] [CrossRef]
- Dao, T.D.; Lee, H.I.; Jeong, H.M. Alumina-coated graphene nanosheet and its composite of acrylic rubber. J. Colloid Interface Sci. 2014, 416, 38–43. [Google Scholar] [CrossRef]
- Gholampour, A.; Kiamahalleh, M.V.; Tran, D.N.; Ozbakkaloglu, T.; Losic, D. From graphene oxide to reduced graphene oxide: Impact on the physiochemical and mechanical properties of graphene-cement materials. ACS Appl. Mater. Interfaces 2017, 9, 43275–43286. [Google Scholar] [CrossRef]
- Du, Y.; Yang, J.; Thomas, B.S.; Li, L.; Li, H.; Shaban, W.M.; Chong, W.T. Influence of hybrid graphene oxide/carbon nanotubes on the mechanical properties and microstructure of magnesium potassium phosphate cement paste. Constr. Build. Mater. 2020, 260, 120449. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, L.; Yue, W. Assembly of core-shell structured porous carbon-graphene materials as anode materials for lithium-ion batteries. Electrochim. Acta 2015, 152, 338–344. [Google Scholar] [CrossRef]
- Huang, H.H.; De Silva, K.K.; Kumara, G.; Yoshimura, M. Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 2018, 8, 6849. [Google Scholar] [CrossRef]
- López-Díaz, D.; Holgado, M.L.; García-Fierro, J.L.; Velázquez, M.M. Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 2017, 121, 20489–20497. [Google Scholar] [CrossRef]
- Xu, Y.T.; Guo, Y.; Song, L.X.; Zhang, K.; Yuen, M.M.; Xu, J.B.; Fu, X.Z.; Sun, R.; Wong, C.P. Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell materials as lithium ion battery anode materials. Electrochim. Acta 2015, 176, 434–441. [Google Scholar] [CrossRef]
- Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P.C. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 2006, 6, 2667–2673. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, J.; Huang, L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon 2019, 143, 610–640. [Google Scholar] [CrossRef]
- Shao, G.; Hanaor, D.A.; Wang, J.; Kober, D.; Li, S.; Wang, X.; Shen, X.; Bekheet, M.F.; Gurlo, A. Polymer-derived SiOC integrated with a graphene aerogel as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 2020, 12, 46045–46056. [Google Scholar] [CrossRef]
- Xu, G.; Du, S.; He, J.; Shi, X. The role of admixed graphene oxide in a cement hydration system. Carbon 2019, 148, 141–150. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, C.; Xiao, G.; Yi, M.; Chen, Z.; Zhang, J. Electrostatic self-assembly preparation of reduced graphene oxide-encapsulated alumina nanoparticles with enhanced mechanical properties of alumina nanomaterials. J. Eur. Ceram. Soc. 2018, 38, 5122–5133. [Google Scholar] [CrossRef]
- Wozniak, J.; Jastrzębska, A.; Cygan, T.; Olszyna, A. Surface modification of graphene oxide nanoplatelets and its influence on mechanical properties of alumina matrix materials. J. Eur. Ceram. Soc. 2017, 37, 1587–1592. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Fan, Z.; Yan, J.; Wei, T. Preparation of graphene nanosheet/alumina materials by spark plasma sintering. Mater. Res. Bull. 2011, 46, 315–318. [Google Scholar] [CrossRef]
- Liu, F.; Wang, M.; Chen, Y.; Gao, J.; Ma, T. Mechanical properties and microstructure of reaction sintering SiC ceramics reinforced with graphene-based fillers. Appl. Phys. A. 2019, 125, 680. [Google Scholar] [CrossRef]
- Chu, K.; Wang, F.; Li, Y.B.; Wang, X.H.; Huang, D.J.; Zhang, H. Interface structure and strengthening behavior of graphene/CuCr materials. Carbon 2018, 133, 127–139. [Google Scholar] [CrossRef]
- Bisht, A.; Srivastava, M.; Kumar, R.M.; Lahiri, I.; Lahiri, D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A 2017, 695, 20–28. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Gao, H.; Wang, Y.; Liang, J.; Shu, D.; Wang, J.; Sun, B. Formation of multilayer interfaces and the load transfer in graphene nanoplatelets reinforced Al matrix materials. Mater. Charact. 2020, 159, 110018. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, K.; Yan, Q.; Xiong, W.; Wu, X. Microstructure and mechanical properties of graphene nanoplatelets reinforced Al matrix materials fabricated by spark plasma sintering. J. Alloys Compd. 2020, 837, 155495. [Google Scholar]
- Chen, B.; Shen, J.; Ye, X.; Imai, H.; Umeda, J.; Takahashi, M.; Kondoh, K. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix materials. Carbon 2017, 114, 198–208. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Wang, M.; Liu, E.; Zhao, N.; Shi, C.; Lin, D.; Zhu, F.; He, C. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix materials. Nat. Commun. 2020, 11, 2775. [Google Scholar] [CrossRef]
- Steurer, P.; Wissert, R.; Thomann, R.; Mülhaupt, R. Functionalized graphenes and thermoplastic nanomaterials based upon expanded graphite oxide. Macromol. Rapid. Commun. 2009, 30, 316–327. [Google Scholar] [CrossRef]
- Hansen, N. Hall-Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Han, Z.; Han, Y.; Bi, L.; Zhang, X.; Lu, X.; Zhao, J.; Chu, W.; Li, J.; et al. Towards high strengthening efficiency of equiaxed and platelet-shaped alumina reinforced zirconia ceramics with textured microstructure using DLP-based stereolithography. Ceram. Int. 2024, 50, 2467–2478. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, X.; Shi, C.; Liu, E.; He, C.; He, F.; Zhao, N. Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu materials by in situ formation of Mo2C nanoparticles. Mater. Sci. Eng. A 2019, 766, 138365. [Google Scholar] [CrossRef]
Materials | Al2O3 | TiB2 | Al2O3–RGO | GO | MgO | Y2O3 |
---|---|---|---|---|---|---|
ATB–RG0.0 | 75.68 | 23.32 | 0.00 | 0.00 | 0.50 | 0.50 |
ATB–RG1.5 | 73.86 | 23.64 | 1.50 | 0.00 | 0.50 | 0.50 |
ATB–RG3.0 | 72.04 | 23.96 | 3.00 | 0.00 | 0.50 | 0.50 |
ATB–RG4.5 | 70.22 | 24.28 | 4.50 | 0.00 | 0.50 | 0.50 |
ATB–G1.5 | 75.68 | 23.32 | 1.50 | 1.50 | 0.50 | 0.50 |
ATB–G4.5 | 73.86 | 23.64 | 3.00 | 3.00 | 0.50 | 0.50 |
ATB–G4.5 | 72.04 | 23.96 | 4.50 | 4.50 | 0.50 | 0.50 |
Materials | Theoretical Density (g/cm3) | Bulk Density (g/cm3) | Relative Density (%) |
---|---|---|---|
ATB–RG0.0 | 4.15 | 4.10 | 98.75 |
ATB–RG1.5 | 4.11 | 3.92 | 95.42 |
ATB–RG3.0 | 4.06 | 3.77 | 92.88 |
ATB–RG4.5 | 4.03 | 3.49 | 86.65 |
ATB–G1.5 | 4.11 | 3.87 | 94.16 |
ATB–G3.0 | 4.06 | 3.48 | 85.71 |
ATB–G4.5 | 4.03 | 3.32 | 82.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Feng, Z.; Xie, Y.; Wang, H.; Ji, Q.; Wang, J.; Xu, C. Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials. Crystals 2024, 14, 949. https://doi.org/10.3390/cryst14110949
Hu Y, Feng Z, Xie Y, Wang H, Ji Q, Wang J, Xu C. Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials. Crystals. 2024; 14(11):949. https://doi.org/10.3390/cryst14110949
Chicago/Turabian StyleHu, Yangyang, Zhenzhen Feng, Yonghui Xie, Hongyang Wang, Qinglong Ji, Jiaoni Wang, and Chonghai Xu. 2024. "Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials" Crystals 14, no. 11: 949. https://doi.org/10.3390/cryst14110949
APA StyleHu, Y., Feng, Z., Xie, Y., Wang, H., Ji, Q., Wang, J., & Xu, C. (2024). Surface Modification of Graphene Oxide and Its Strengthening and Toughening Mechanism for Alumina-Based Ceramic Materials. Crystals, 14(11), 949. https://doi.org/10.3390/cryst14110949